Câu hỏi:

17/04/2023 368 Lưu

Một con lắc lò xo gồm vật nhỏ và lò xo nhẹ có độ cứng k, dao động điều hòa dọc theo trục \(Ox\) quanh vị trí cân bằng \(O\). Biểu thức lực kéo về tác dụng lên vật theo li độ \(x\)

A. \(F = - kx\)
B. \(F = \frac{1}{2}k{x^2}\)
C. \(F = kx\)
D. \(F = - \frac{1}{2}kx\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lực kéo về có độ lớn tỉ lệ với độ lớn li độ và luôn hướng về vị trí cân bằng nên \(F = - kx\)

Chọn đáp án \(A\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Cùng phương, cùng tần số cùng biên độ, độ lệch pha không đổi theo thời gian.

B. Cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian

C. Cùng tần số, cùng biên độ, độ lệch pha không đổi theo thời gian.

D. Cùng phương, cùng biên độ, cùng pha, tần số không đổi theo thời gian.

Lời giải

Các nguồn sóng kết hợp là các nguồn sóng dao động cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian. Chọn đáp án \(B\)

Câu 2

A. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}}}{{\;g\ell }}} \quad \quad \)       
B. \(\alpha = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}\ell }}{g}} \)
C. \(\alpha = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{\;g\ell }}} \)

D. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}\ell }}{g}} \)

Lời giải

Con lắc đơn dao động điều hòa có phương trình li độ cong \[s = {S_0}\cos \left( {\omega t + \varphi } \right) \Rightarrow \cos \left( {\omega t + \varphi } \right) = \frac{s}{{{S_0}}}\]biểu thức vận tốc \[v = - \omega {S_0}\sin \left( {\omega t + \varphi } \right) \Rightarrow \sin \left( {\omega t + \varphi } \right) = \frac{{ - v}}{{\omega {S_0}}}\]

\[\begin{array}{l}{\sin ^2}\left( {\omega t + \varphi } \right) + {\cos ^2}\left( {\omega t + \varphi } \right) = 1\\ \Rightarrow {\left( {\frac{{ - v}}{{\omega {S_0}}}} \right)^2} + {\left( {\frac{s}{{{S_0}}}} \right)^2} = 1\\ \Rightarrow {\left( {\frac{v}{\omega }} \right)^2} + {s^2} = S_0^2 \Leftrightarrow {\left( {l{\alpha _0}} \right)^2} = {\left( {l{\alpha _0}} \right)^2} + {\left( {\frac{v}{\omega }} \right)^2} \Leftrightarrow {\alpha _0}^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}v\`i :{\omega ^2} = \frac{g}{l}\\ \Rightarrow {\alpha _{}}^{} = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{gl}}} \end{array}\]

Chọn đáp án \(C\)

Câu 3

A. là hàm bậc hai của thời gian

B. là hàm bậc nhất của thời gian

C. biến thiên điều hòa theo thời gian

D. không đổi theo thời gian

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. xác định khối lượng riêng của không khí

B. xác định từ trường trái đất

C. Xác định gia tốc trọng trường

D. xác định khối lượng của một vật nặng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 8\cos \left( {4\pi t + \frac{\pi }{3}} \right)cm\)

B. \(x = 8\cos \left( {4\pi t - \frac{\pi }{3}} \right)cm\)

C. \(x = 10\cos \left( {5\pi t + \frac{\pi }{3}} \right)cm\)                         

D. \(x = 10\cos \left( {5\pi t - \frac{{2\pi }}{3}} \right)cm\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP