Câu hỏi:

17/04/2023 547 Lưu

Ở mặt nước có hai nguồn sóng dao động theo phương vuông góc với mặt nước, có cùng phương trình \(u = Acos\omega t\). Trong miền gặp nhau của hai sóng, những điểm mà ở đó các phần tử nước dao động với biên độ cực đại sẽ có hiệu đường đi của sóng từ hai nguồn đến đó bằng

A. một số lẻ lần bước sóng.

B. một số nguyên lần nửa bước sóng.

C. một số nguyên lần bước sóng.

D. một số lẻ lần nửa bước sóng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Với hai nguồn cùng pha điều kiện M dao động với biên độ cực đại là: \({d_2} - {d_1} = k\lambda \)(k là số nguyên) Chọn đáp án \(C\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Cùng phương, cùng tần số cùng biên độ, độ lệch pha không đổi theo thời gian.

B. Cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian

C. Cùng tần số, cùng biên độ, độ lệch pha không đổi theo thời gian.

D. Cùng phương, cùng biên độ, cùng pha, tần số không đổi theo thời gian.

Lời giải

Các nguồn sóng kết hợp là các nguồn sóng dao động cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian. Chọn đáp án \(B\)

Câu 2

A. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}}}{{\;g\ell }}} \quad \quad \)       
B. \(\alpha = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}\ell }}{g}} \)
C. \(\alpha = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{\;g\ell }}} \)

D. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}\ell }}{g}} \)

Lời giải

Con lắc đơn dao động điều hòa có phương trình li độ cong \[s = {S_0}\cos \left( {\omega t + \varphi } \right) \Rightarrow \cos \left( {\omega t + \varphi } \right) = \frac{s}{{{S_0}}}\]biểu thức vận tốc \[v = - \omega {S_0}\sin \left( {\omega t + \varphi } \right) \Rightarrow \sin \left( {\omega t + \varphi } \right) = \frac{{ - v}}{{\omega {S_0}}}\]

\[\begin{array}{l}{\sin ^2}\left( {\omega t + \varphi } \right) + {\cos ^2}\left( {\omega t + \varphi } \right) = 1\\ \Rightarrow {\left( {\frac{{ - v}}{{\omega {S_0}}}} \right)^2} + {\left( {\frac{s}{{{S_0}}}} \right)^2} = 1\\ \Rightarrow {\left( {\frac{v}{\omega }} \right)^2} + {s^2} = S_0^2 \Leftrightarrow {\left( {l{\alpha _0}} \right)^2} = {\left( {l{\alpha _0}} \right)^2} + {\left( {\frac{v}{\omega }} \right)^2} \Leftrightarrow {\alpha _0}^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}v\`i :{\omega ^2} = \frac{g}{l}\\ \Rightarrow {\alpha _{}}^{} = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{gl}}} \end{array}\]

Chọn đáp án \(C\)

Câu 3

A. là hàm bậc hai của thời gian

B. là hàm bậc nhất của thời gian

C. biến thiên điều hòa theo thời gian

D. không đổi theo thời gian

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. xác định khối lượng riêng của không khí

B. xác định từ trường trái đất

C. Xác định gia tốc trọng trường

D. xác định khối lượng của một vật nặng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 8\cos \left( {4\pi t + \frac{\pi }{3}} \right)cm\)

B. \(x = 8\cos \left( {4\pi t - \frac{\pi }{3}} \right)cm\)

C. \(x = 10\cos \left( {5\pi t + \frac{\pi }{3}} \right)cm\)                         

D. \(x = 10\cos \left( {5\pi t - \frac{{2\pi }}{3}} \right)cm\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP