Ở mặt nước có hai nguồn sóng dao động theo phương vuông góc với mặt nước, có cùng phương trình \(u = Acos\omega t\). Trong miền gặp nhau của hai sóng, những điểm mà ở đó các phần tử nước dao động với biên độ cực đại sẽ có hiệu đường đi của sóng từ hai nguồn đến đó bằng
Ở mặt nước có hai nguồn sóng dao động theo phương vuông góc với mặt nước, có cùng phương trình \(u = Acos\omega t\). Trong miền gặp nhau của hai sóng, những điểm mà ở đó các phần tử nước dao động với biên độ cực đại sẽ có hiệu đường đi của sóng từ hai nguồn đến đó bằng
B. một số nguyên lần nửa bước sóng.
D. một số lẻ lần nửa bước sóng.
Quảng cáo
Trả lời:

Với hai nguồn cùng pha điều kiện M dao động với biên độ cực đại là: \({d_2} - {d_1} = k\lambda \)(k là số nguyên) Chọn đáp án \(C\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- Sổ tay Vật lí 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. Cùng phương, cùng tần số cùng biên độ, độ lệch pha không đổi theo thời gian.
B. Cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian
C. Cùng tần số, cùng biên độ, độ lệch pha không đổi theo thời gian.
D. Cùng phương, cùng biên độ, cùng pha, tần số không đổi theo thời gian.
Lời giải
Các nguồn sóng kết hợp là các nguồn sóng dao động cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian. Chọn đáp án \(B\)
Câu 2
D. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}\ell }}{g}} \)
Lời giải
Con lắc đơn dao động điều hòa có phương trình li độ cong \[s = {S_0}\cos \left( {\omega t + \varphi } \right) \Rightarrow \cos \left( {\omega t + \varphi } \right) = \frac{s}{{{S_0}}}\]biểu thức vận tốc \[v = - \omega {S_0}\sin \left( {\omega t + \varphi } \right) \Rightarrow \sin \left( {\omega t + \varphi } \right) = \frac{{ - v}}{{\omega {S_0}}}\]
Vì \[\begin{array}{l}{\sin ^2}\left( {\omega t + \varphi } \right) + {\cos ^2}\left( {\omega t + \varphi } \right) = 1\\ \Rightarrow {\left( {\frac{{ - v}}{{\omega {S_0}}}} \right)^2} + {\left( {\frac{s}{{{S_0}}}} \right)^2} = 1\\ \Rightarrow {\left( {\frac{v}{\omega }} \right)^2} + {s^2} = S_0^2 \Leftrightarrow {\left( {l{\alpha _0}} \right)^2} = {\left( {l{\alpha _0}} \right)^2} + {\left( {\frac{v}{\omega }} \right)^2} \Leftrightarrow {\alpha _0}^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}v\`i :{\omega ^2} = \frac{g}{l}\\ \Rightarrow {\alpha _{}}^{} = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{gl}}} \end{array}\]
Chọn đáp án \(C\)
Câu 3
B. là hàm bậc nhất của thời gian
D. không đổi theo thời gian
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
B. xác định từ trường trái đất
D. xác định khối lượng của một vật nặng
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
B. \(x = 8\cos \left( {4\pi t - \frac{\pi }{3}} \right)cm\)
C. \(x = 10\cos \left( {5\pi t + \frac{\pi }{3}} \right)cm\)
D. \(x = 10\cos \left( {5\pi t - \frac{{2\pi }}{3}} \right)cm\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \(80\;cm\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.