Câu hỏi:

17/04/2023 490 Lưu

Một vật dao động điều hòa dọc theo trục \(Ox\), gọi \(\Delta t\) là khoảng thời gian giữa hai lần liên tiếp vật có động năng bằng thế năng. Tại thời điểm \(t\) vật qua vị trí có tốc độ \(15\pi \sqrt 3 \;cm/s\) với độ lớn gia tốc \(22,5\;m/{s^2}\), sau đó một khoảng gian đúng bằng \(\Delta t\) vật qua vị trí có độ lớn vận tốc \(45\pi cm/s\). Biên độ dao động của vật là

A. \(4\sqrt 2 \;cm\).
B. \(8\;cm\).
C. \(5\sqrt 2 \;cm\).

D. \(6\sqrt 3 \;cm\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là \(\Delta t = \frac{T}{4}\), đây là khoảng thời gian giữa hai thời điểm vuông pha nên có: \(v_1^2 + v_2^2 = v_{\max }^2 \Leftrightarrow {\left( {15\pi \sqrt 3 } \right)^2} + {\left( {45\pi } \right)^2} = v_{\max }^2 \Rightarrow v_{\max }^2 = 2700\)

Tại thời điểm có gia tốc \(22,5\;m/{s^2}\)ta có hệ thức vuông pha:

\({\left( {\frac{v}{{{v_{\max }}}}} \right)^2} + {\left( {\frac{a}{{{a_{\max }}}}} \right)^2} = 1 \Leftrightarrow \frac{{{{\left( {15\pi \sqrt 3 } \right)}^2}}}{{2700}} + {\left( {\frac{{22,5}}{{{a_{\max }}}}} \right)^2} = 1 \Rightarrow {a_{\max }} = 15\sqrt 3 (m/{s^2})\)

Biên độ dao động của vật là:

\(A = \frac{{v_{\max }^2}}{{{a_{\max }}}} = \frac{{2700}}{{15000\sqrt 3 }} \approx 0,06\sqrt 3 m = 6\sqrt 3 \,cm\). Chọn đáp án \[{\rm{D}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Cùng phương, cùng tần số cùng biên độ, độ lệch pha không đổi theo thời gian.

B. Cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian

C. Cùng tần số, cùng biên độ, độ lệch pha không đổi theo thời gian.

D. Cùng phương, cùng biên độ, cùng pha, tần số không đổi theo thời gian.

Lời giải

Các nguồn sóng kết hợp là các nguồn sóng dao động cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian. Chọn đáp án \(B\)

Câu 2

A. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}}}{{\;g\ell }}} \quad \quad \)       
B. \(\alpha = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}\ell }}{g}} \)
C. \(\alpha = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{\;g\ell }}} \)

D. \(\alpha = \pm \sqrt {\alpha _0^2 + \frac{{{v^2}\ell }}{g}} \)

Lời giải

Con lắc đơn dao động điều hòa có phương trình li độ cong \[s = {S_0}\cos \left( {\omega t + \varphi } \right) \Rightarrow \cos \left( {\omega t + \varphi } \right) = \frac{s}{{{S_0}}}\]biểu thức vận tốc \[v = - \omega {S_0}\sin \left( {\omega t + \varphi } \right) \Rightarrow \sin \left( {\omega t + \varphi } \right) = \frac{{ - v}}{{\omega {S_0}}}\]

\[\begin{array}{l}{\sin ^2}\left( {\omega t + \varphi } \right) + {\cos ^2}\left( {\omega t + \varphi } \right) = 1\\ \Rightarrow {\left( {\frac{{ - v}}{{\omega {S_0}}}} \right)^2} + {\left( {\frac{s}{{{S_0}}}} \right)^2} = 1\\ \Rightarrow {\left( {\frac{v}{\omega }} \right)^2} + {s^2} = S_0^2 \Leftrightarrow {\left( {l{\alpha _0}} \right)^2} = {\left( {l{\alpha _0}} \right)^2} + {\left( {\frac{v}{\omega }} \right)^2} \Leftrightarrow {\alpha _0}^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}v\`i :{\omega ^2} = \frac{g}{l}\\ \Rightarrow {\alpha _{}}^{} = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{gl}}} \end{array}\]

Chọn đáp án \(C\)

Câu 3

A. là hàm bậc hai của thời gian

B. là hàm bậc nhất của thời gian

C. biến thiên điều hòa theo thời gian

D. không đổi theo thời gian

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. xác định khối lượng riêng của không khí

B. xác định từ trường trái đất

C. Xác định gia tốc trọng trường

D. xác định khối lượng của một vật nặng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x = 8\cos \left( {4\pi t + \frac{\pi }{3}} \right)cm\)

B. \(x = 8\cos \left( {4\pi t - \frac{\pi }{3}} \right)cm\)

C. \(x = 10\cos \left( {5\pi t + \frac{\pi }{3}} \right)cm\)                         

D. \(x = 10\cos \left( {5\pi t - \frac{{2\pi }}{3}} \right)cm\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP