Một con lắc đơn dao động điều hoà tại một nơi có \(g = 9,8\;m/{s^2}\). Vận tốc cực đại của dao động 39,2 \(cm/s\). Khi vật đi qua vị trí có li độ dài \(s = 3,92\;cm\) thì có vận tốc \(19,6\sqrt 3 \;cm/s\). Chiều dài dây treo vật là
Một con lắc đơn dao động điều hoà tại một nơi có \(g = 9,8\;m/{s^2}\). Vận tốc cực đại của dao động 39,2 \(cm/s\). Khi vật đi qua vị trí có li độ dài \(s = 3,92\;cm\) thì có vận tốc \(19,6\sqrt 3 \;cm/s\). Chiều dài dây treo vật là
Quảng cáo
Trả lời:
Áp dụng hệ thức độc lập thời gian với con lắc đơn ta có:
\[{\left( {\frac{v}{{v\max }}} \right)^2} + {\frac{s}{{S_0^2}}^2} = 1 \Leftrightarrow {\left( {\frac{{19,6\sqrt 3 }}{{39,2}}} \right)^2} + {\left( {\frac{{3,92}}{{{S_0}}}} \right)^2} = 1 \Leftrightarrow {S_0} = 7,84\,cm\]
Mặt khác: vmax = \[39,2\,cm/s = \sqrt {\frac{g}{l}} {S_0} \Rightarrow l = \]39,2 cm.
Chọn đáp án \[{\rm{D}}\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các nguồn sóng kết hợp là các nguồn sóng dao động cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian. Chọn đáp án \(B\)
Lời giải
Con lắc đơn dao động điều hòa có phương trình li độ cong \[s = {S_0}\cos \left( {\omega t + \varphi } \right) \Rightarrow \cos \left( {\omega t + \varphi } \right) = \frac{s}{{{S_0}}}\]biểu thức vận tốc \[v = - \omega {S_0}\sin \left( {\omega t + \varphi } \right) \Rightarrow \sin \left( {\omega t + \varphi } \right) = \frac{{ - v}}{{\omega {S_0}}}\]
Vì \[\begin{array}{l}{\sin ^2}\left( {\omega t + \varphi } \right) + {\cos ^2}\left( {\omega t + \varphi } \right) = 1\\ \Rightarrow {\left( {\frac{{ - v}}{{\omega {S_0}}}} \right)^2} + {\left( {\frac{s}{{{S_0}}}} \right)^2} = 1\\ \Rightarrow {\left( {\frac{v}{\omega }} \right)^2} + {s^2} = S_0^2 \Leftrightarrow {\left( {l{\alpha _0}} \right)^2} = {\left( {l{\alpha _0}} \right)^2} + {\left( {\frac{v}{\omega }} \right)^2} \Leftrightarrow {\alpha _0}^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}v\`i :{\omega ^2} = \frac{g}{l}\\ \Rightarrow {\alpha _{}}^{} = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{gl}}} \end{array}\]
Chọn đáp án \(C\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.