Câu hỏi:
17/04/2023 363
Ở mặt thoáng của một chất lỏng có hai nguồn sóng kết hợp \(A\) và \(B\) cách nhau \(20\;cm\), dao động theo phương thẳng đứng với phương trình \({u_A} = 2\cos 40\pi t\) và \({u_B} = 2\cos (40\pi t + \pi )\left( {{u_A}} \right.\) và \({u_B}\) tính bằng mm, \(t\) tính bằng s). Biết tốc độ truyền sóng trên mặt chất lỏng là \(30\;cm/s\). Xét hình vuông \(AMNB\) thuộc mặt thoáng chất lỏng. Số điểm dao động với biên độ cực đại trên đoạn BM là
Ở mặt thoáng của một chất lỏng có hai nguồn sóng kết hợp \(A\) và \(B\) cách nhau \(20\;cm\), dao động theo phương thẳng đứng với phương trình \({u_A} = 2\cos 40\pi t\) và \({u_B} = 2\cos (40\pi t + \pi )\left( {{u_A}} \right.\) và \({u_B}\) tính bằng mm, \(t\) tính bằng s). Biết tốc độ truyền sóng trên mặt chất lỏng là \(30\;cm/s\). Xét hình vuông \(AMNB\) thuộc mặt thoáng chất lỏng. Số điểm dao động với biên độ cực đại trên đoạn BM là
Quảng cáo
Trả lời:
Bước sóng là \(\lambda = vT = v\frac{{2\pi }}{\omega } = 30\;\frac{{2\pi }}{{40\pi }} = 1,5\,cm\)
Vì hai nguồn ngược pha nên những điểm cực đại có hiệu đường đi đến hai nguồn thỏa mãn
\[{d_2} - {d_1} = k\lambda \Rightarrow k = \frac{{{d_2} - {d_1}}}{\lambda }\] (k bán nguyên)
Xét những điểm nằm trên đường chéo BM của hình vuông ta có:
Tại B: \[{k_B} = \frac{{{d_2} - {d_1}}}{\lambda } = \frac{{0 - AB}}{\lambda } = \frac{{0 - 20}}{{1,5}} = - 13,3\]
\[{k_M} = \frac{{{d_2} - {d_1}}}{\lambda } = \frac{{MB - MA}}{\lambda } = \frac{{20\sqrt 2 - 20}}{{1,5}} = 5,52\]
Các điểm trên MB có k bán nguyên thỏa mãn
\[ - 13,3 < k < 5,52 \Rightarrow - 12,5 < k < 5,5\] Có tất cả 19 giá trị k bán nguyên thỏa mãn. Có 19 cực đại trên MB. Chọn đáp án \[{\rm{C}}.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- 20 đề thi tốt nghiệp môn Vật lí (có đáp án chi tiết) ( 38.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Các nguồn sóng kết hợp là các nguồn sóng dao động cùng phương, cùng tần số và độ lệch pha không đổi theo thời gian. Chọn đáp án \(B\)
Lời giải
Con lắc đơn dao động điều hòa có phương trình li độ cong \[s = {S_0}\cos \left( {\omega t + \varphi } \right) \Rightarrow \cos \left( {\omega t + \varphi } \right) = \frac{s}{{{S_0}}}\]biểu thức vận tốc \[v = - \omega {S_0}\sin \left( {\omega t + \varphi } \right) \Rightarrow \sin \left( {\omega t + \varphi } \right) = \frac{{ - v}}{{\omega {S_0}}}\]
Vì \[\begin{array}{l}{\sin ^2}\left( {\omega t + \varphi } \right) + {\cos ^2}\left( {\omega t + \varphi } \right) = 1\\ \Rightarrow {\left( {\frac{{ - v}}{{\omega {S_0}}}} \right)^2} + {\left( {\frac{s}{{{S_0}}}} \right)^2} = 1\\ \Rightarrow {\left( {\frac{v}{\omega }} \right)^2} + {s^2} = S_0^2 \Leftrightarrow {\left( {l{\alpha _0}} \right)^2} = {\left( {l{\alpha _0}} \right)^2} + {\left( {\frac{v}{\omega }} \right)^2} \Leftrightarrow {\alpha _0}^2 = {\alpha ^2} + \frac{{{v^2}}}{{gl}}v\`i :{\omega ^2} = \frac{g}{l}\\ \Rightarrow {\alpha _{}}^{} = \pm \sqrt {\alpha _0^2 - \frac{{{v^2}}}{{gl}}} \end{array}\]
Chọn đáp án \(C\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.