Câu hỏi:
17/04/2023 289Trong một thí nghiệm về giao thoa sóng nước, hai nguồn sóng kết hợp \({O_1}\) và \({O_2}\) dao động cùng pha, cùng biên độ. Chọn hệ tọa độ vuông góc \(Oxy\) (thuộc mặt nước) với gốc tọa độ là vị trí đặt nguồn \({O_1}\) còn nguồn \({O_2}\) nằm trên trục \(Oy\). Hai điểm \(P\) và \(Q\) nằm trên \(Ox\) có \(OP = 4,5\;cm\) và \(OQ = 8\;cm\). Dịch chuyển nguồn \({O_2}\) trên trục \(Oy\) đến vị trí sao cho góc \(P{O_2}Q\) có giá trị lớn nhất thì phần tử nước tại \(P\) không dao động còn phần tử nước tại \(Q\) dao động với biên độ cực đại. Biết giữa \(P\) và \(Q\) không còn cực đại nào khác. Trên đoạn \(OP\), điểm gần \(P\) nhất mà các phần tử nước dao động với biên độ cực đại cách \(P\) một đoạn là
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Góc PO2Q max khi (tan (PO2Q))max
\[\tan (P{O_2}Q) = \tan (Q{O_2}O - P{O_2}O) = \frac{{\tan Q{O_2}O - \tan P{O_2}O}}{{1 + \tan Q{O_2}O\tan P{O_2}O}} = \frac{{\frac{8}{{O{O_2}}} - \frac{{4,5}}{{O{O_2}}}}}{{1 + \frac{8}{{O{O_2}}}\frac{{4,5}}{{O{O_2}}}}} = \frac{{3,5}}{{O{O_2} + \frac{{36}}{{O{O_2}}}}} \le \frac{{3,5}}{{2\sqrt {36} }}\](AD bất đẳng thức Cosi ở mẫu) Dấu bằng xảy ra khi \[O{O_2} = \frac{{36}}{{O{O_2}}}\]hay \[O{O_2} = \sqrt {36} = 6\,cm\];
+ Khi đó:
\[Q{O_2} = \sqrt {{8^2} + {6^2}} = 10\,cm\] và \[P{O_2} = \sqrt {4,{5^2} + {6^2}} = 7,5\,cm\]
+ Vì Q là cực đại nên: \[Q{O_2} - QO = k\lambda \Rightarrow 10 - 8 = k\lambda \Leftrightarrow k\lambda = 2(1)\]
+ P là cực tiểu gần Q nhất nên
\[\begin{array}{l}P{O_2} - PO = \left( {k + 0,5} \right)\lambda \Leftrightarrow 7,5 - 4,5 = \left( {k + 0,5} \right)\lambda \\ \Leftrightarrow \left( {k + 0,5} \right)\lambda = 3(2)\end{array}\]
+ Từ (1) và (2) suy ra: \[\lambda = 2\,cm\] và k = 1.
+ Do đó: Cực đại gần P nhất là cực đại bậc 2 có \[{d_2} - {d_1} = 2\lambda = 4cm \Leftrightarrow \sqrt {{6^2} + d_1^2} - {d_1} = 2,2 \Rightarrow {d_1} = 2,5cm\]
+ Điểm cực đại này cách P một khoảng a = OP – d1 = 4,5 – 2,5 = 2 cm. Chọn đáp án \[D\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Một con lắc đơn có chiều dài 1 dao động điều hòa với biên độ góc \({\alpha _0}\) tại nơi có gia tốc trọng trường g. Ở thời điểm t vật có tốc độ v, lúc đó vật có li độ góc là
Câu 3:
Một vật dao động điều hòa có phương trình dao động \(x = A\cos (\omega t + \varphi )\) thì pha của dao động
Câu 5:
Một con lắc đơn có chiều dài \(0,5(\;m)\), quả cầu nhỏ có khối lượng 200 (\(g\)), dao động tại nơi có gia tốc trọng trường \(9,8\;m/{s^2}\), với biên độ góc 0,12 (rad). Trong quá trình dao động, con lắc luôn chịu tác dụng lực ma sát nhỏ có độ lớn không đổi \(0,002(\;N)\) thì nó sẽ dao động tắt dần. Tính tổng quãng đường quả cầu đi được từ lúc bắt đầu dao động cho đến khi dừng hẳn.
Câu 6:
Một con lắc lò xo treo thẳng đứng có độ cứng \(k = 25\;N/m\) dao động điều hòa theo phương thẳng đứng. Biết trục Ox thẳng đứng hướng xuống, gốc O trùng với vị trí cân bằng. Biết giá trị đại số của lực đàn hồi tác dụng lên vật biến thiên theo đồ thị.
Viết phương trình dao động của vật?
Câu 7:
Một sóng cơ lan truyền trên một đường thẳng từ điểm \(O\) đến điểm \(M\) cách \(O\) một đoạn \(d\). Biết tần số \(f\), bước sóng \(\lambda \) và biên độ a của sóng không đổi trong quá trình sóng truyền. Nếu phương trình dao động của phần tử vật chất tại điểm \(M\) có dạng \({u_M}(t) = a\cos 2\pi ft\) thì phương trình dao động của phần tử vật chất tại \(O\) là
về câu hỏi!