Câu hỏi:

21/03/2024 280

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt bên \(SAB\) là tam giác đều, \(SCD\) là tam giác vuông cân đỉnh \(S\). Gọi \(I,\,\,J\) lần lượt là trung điểm của \(AB\)\(CD\).

a) Chứng minh \(SI \bot SJ\).

b) Chứng minh \(SI \bot \left( {SCD} \right),\,\,SJ \bot \left( {SAB} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy là hình vuông cạnh  (ảnh 1)

a) Ta có tam giác \(SAB\) đều cạnh \(a\) nên \(SI = \frac{{a\sqrt 3 }}{2}\).

Tứ giác \(IBCJ\) là hình chữ nhật nên \(IJ = BC = a\).

Tam giác \(SCD\) là tam giác vuông cân đỉnh \(S\) nên \(SJ = \frac{{CD}}{2} = \frac{a}{2}\).

Do đó, \(S{J^2} + S{I^2} = I{J^2}\,\,\left( { = {a^2}} \right)\), suy ra tam giác \(SIJ\) vuông tại \(S\).

Vậy \(SI \bot SJ\).

b) Vì tam giác \(SCD\) là tam giác cân đỉnh \(S\) nên \(SJ \bot CD\).

Do \(AB\,{\rm{//}}\,CD\) nên \(SJ \bot AB\)\(SI \bot SJ\) nên \(SJ \bot \left( {SAB} \right)\).

Chứng minh tương tự ta có \(SI \bot \left( {SCD} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho \[a > 0\], \[a \ne 1\]. Biểu thức \[{a^{{{\log }_a}{a^2}}}\] bằng

Lời giải

Đáp án D

Câu 2

Trong các hàm số sau, hàm số nào là hàm số lôgarit?

Lời giải

Đáp án B

Câu 3

Tập xác định của hàm số \[y = {6^x}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Chọn mệnh đề đúng trong các mệnh đề sau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho \(a\) là số thực dương, \(m \in \mathbb{Z},n \in \mathbb{N},n \ge 2.\) Khẳng định nào sau đây sai?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP