Câu hỏi:

10/08/2024 169

Khi nói tới dữ liệu lớn người ta thường nghĩ tới kích thước lớn của dữ liệu. Tuy nhiên, trong thực tế, có những dữ liệu không chỉ có kích thước lớn, thường xuyên được cập nhật mà còn bao gồm nhiều loại khác nhau. Em có thể chỉ ra một vài ví dụ về những dữ liệu như vậy không?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 Trả lời:

Ví dụ:

- Dữ liệu tài chính: Dữ liệu từ thị trường chứng khoán, giao dịch ngân hàng, dữ liệu tài chính của các công ty, và dữ liệu về tiền tệ.

- Dữ liệu xã hội (Social Media): Dữ liệu từ các trang web xã hội như Facebook, Twitter, Instagram, LinkedIn, và YouTube. Đây bao gồm các bài viết, bình luận, hình ảnh, video, và thông tin cá nhân của người dùng.

- Dữ liệu y tế: Dữ liệu từ bệnh viện, phòng khám, dữ liệu về bệnh nhân, dược phẩm, và nghiên cứu y học.

- Dữ liệu địa lý và vận tải: Dữ liệu từ hệ thống định vị toàn cầu (GPS), thông tin về giao thông, thời tiết, và hành trình vận chuyển.

- Dữ liệu sản xuất và công nghiệp: Dữ liệu từ máy móc, cảm biến, quá trình sản xuất, và quản lý chuỗi cung ứng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời:

Dưới đây là một vài thành tựu của Khoa học dữ liệu mà em tâm đắc nhất:

- Đổi mới quá trình ra quyết định: khoa học dữ liệu giúp cải thiện quá trình ra quyết định bằng cách phân tích dữ liệu và đưa ra thông tin hữu ích. Điều này ảnh hưởng đến nhiều khía cạnh của cuộc sống và kinh doanh.

- Tự động hoá: khoa học dữ liệu giúp tự động hoá nhiều tác vụ, từ việc xử lý dữ liệu đến việc tối ưu hóa quyết định. Điều này giúp tiết kiệm thời gian và tối ưu hiệu suất.

- Cá nhân hoá dịch vụ và cải thiện trải nghiệm khách hàng: dựa trên dữ liệu, chúng ta có thể cá nhân hoá dịch vụ và sản phẩm để đáp ứng nhu cầu của từng khách hàng một cách tốt nhất. Điều này cải thiện trải nghiệm của khách hàng và tạo sự hài lòng.

Lời giải

 Trả lời:

Đáp án đúng là: C. Kinh doanh, phân phối dữ liệu thu thập được cho các cá nhân, tổ chức quan tâm.

Lý do chọn đáp án này là vì các hoạt động trong lựa chọn C không nằm trong phạm vi hoạt động của Khoa học Dữ liệu. Dưới đây là lý do chi tiết:

A. Nghiên cứu phát triển các phương pháp thu thập và quản lí dữ liệu: Đây là một phần quan trọng của Khoa học Dữ liệu. Việc thu thập và quản lý dữ liệu một cách hiệu quả là cần thiết để có thể sử dụng dữ liệu đó cho các mục đích nghiên cứu và ứng dụng.

B. Khai phá các thông tin, tri thức từ dữ liệu thu được để nâng cao hiệu quả kinh doanh, quản lí: Đây cũng là một phần chính của Khoa học Dữ liệu. Việc khai thác tri thức từ dữ liệu có thể giúp cải thiện quyết định kinh doanh và quản lý thông qua việc phân tích dữ liệu và rút ra các insights quan trọng.

C. Kinh doanh, phân phối dữ liệu thu thập được cho các cá nhân, tổ chức quan tâm: Đây không phải là một phần của Khoa học Dữ liệu. Trong thực tế, việc kinh doanh và phân phối dữ liệu thường liên quan đến các hoạt động thương mại, không phải nghiên cứu và phân tích dữ liệu.

D. Phát triển và áp dụng các phương pháp và kỹ thuật để nhận biết các mẫu hình, các quan hệ và xu hướng có trong dữ liệu: Đây là một phần quan trọng của Khoa học Dữ liệu. Việc phát triển và áp dụng các phương pháp và kỹ thuật như machine learning và data mining giúp phân tích và nhận biết các mẫu hình và xu hướng trong dữ liệu.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP