Câu hỏi:

13/11/2024 99

Một hộp có 52 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số \[1\,,\,\,2\,,\,\,3\,,\,\,...\,,\,\,52;\] hai thẻ khác nhau thì ghi số khác nhau. Rút ngẫu nhiên một thẻ trong hộp. Xác suất các biến cố “Số xuất hiện trên thẻ được rút ra là số lớn hơn 19 và nhỏ hơn 51” là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Không gian mẫu của phép thử là \(\Omega = \left\{ {1;\,\,2;\,\,3;...;\,\,52} \right\}\). Không gian mẫu của phép thử có 52 phần tử.

Khả năng được rút của các thẻ là như nhau nên các kết quả của phép thử có cùng khả năng xảy ra.

Kết quả thuận lợi cho biến cố là những số từ 20 đến 50.

Số kết quả thuận lợi cho biến cố là:

\(\left( {50 - 20} \right):1 + 1 = 31\) (kết quả)

Vậy xác suất xảy ra biến cố “Số xuất hiện trên thẻ được rút ra là số lớn hơn 19 và nhỏ hơn 51” là \(\frac{{31}}{{52}}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Không gian mẫu của phép thử là \(\Omega = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,..\,;\,\,20} \right\}\). Không gian mẫu của phép thử có 20 phần tử.

Khả năng bạn Ngân lấy các viên bi là như nhau nên các kết quả của phép thử có cùng khả năng xảy ra.

Có 3 kết quả thuận lợi là: \[1\,;\,\,8\,;\,\,15.\]

Vậy xác suất xảy ra biến cố \[D\] là \[P\left( D \right) = \frac{3}{{20}}\].

Lời giải

Đáp án đúng là: B

Không gian mẫu của phép thử là \[\Omega = \left\{ {1\,;\,\,2\,;\,\,3\,;\,\,4\,;\,\,5\,;\,\,6\,;\,\,7\,;\,\,8\,;\,\,9\,;\,\,10\,;\,\,11\,;\,\,12} \right\}\].

Khả năng quay vào các số là như nhau nên các kết quả của phép thử có cùng khả năng xảy ra.

Các kết quả thuận lợi cho biến cố \[D\] là: \[2\,;\,\,3\,;\,\,5\,;\,\,7\,;\,\,11.\]

Vậy xác suất xảy ra biến cố \[D\] là \(P\left( D \right) = \frac{5}{{12}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Chọn ngẫu nhiên một số tự nhiên từ 1 đến 10. Xác suất của biến cố \(A\): “Số được chọn là 10” là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

I. Nhận biết

Cho phép thử \[T\], xét biến cố \[E\]. Kết quả của phép thử \[T\] làm cho biến cố \[E\] xảy ra được gọi là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay