Câu hỏi:
14/02/2025 60Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = 6{\rm{\;cm}}\) và \(AC = 8{\rm{\;cm}}.\) Kẻ đường cao \(AH.\)
a) Chứng minh
b) Tính độ dài các cạnh \(BC\) và \(AH.\)
c) Tia phân giác của \(\widehat {ACB}\) cắt \(AH\) tại \(E,\) cắt \(AB\) tại \(D.\) Chứng minh rằng \[\frac{{AC}}{{AD}} = \frac{{HC}}{{HE}}.\]
d) Tính tỉ số diện tích của \(\Delta ACD\) và \(\Delta HCE.\)
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) và \(\Delta HBA\) có: \(\widehat {BAC} = \widehat {BHA} = 90^\circ \) và \(\widehat B\) là góc chung. Do đó (g.g). b) Vì tam giác \(ABC\) vuông tại \(A,\) theo định lí Pythagore ta có: \(B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100.\) Suy ra \(BC = 10{\rm{\;cm}}.\) |
![]() |
Theo câu a), nên \(\frac{{AC}}{{HA}} = \frac{{BC}}{{AB}}\) (tỉ số cạnh tương ứng).
Suy ra \(AH = \frac{{AB \cdot AC}}{{BC}} = \frac{{6 \cdot 8}}{{10}} = 4,8{\rm{\;cm}}{\rm{.}}\)
c) Xét \(\Delta ACD\) và \(\Delta HCE\) có:
\(\widehat {DAC} = \widehat {EHC} = 90^\circ \) và \(\widehat {ACD} = \widehat {HCE}\) (do \(CD\) là tia phân giác của \(\widehat {ACB}).\)
Do đó (g.g).
Suy ra \[\frac{{AC}}{{HC}} = \frac{{AD}}{{HE}}\] (tỉ số cạnh tương ứng) nên \[\frac{{AC}}{{AD}} = \frac{{HC}}{{HE}}\] (*)
d) ⦁ Chứng minh tương tự câu a), ta cũng có: (g.g).
Mà hay nên
Suy ra \[\frac{{BH}}{{AH}} = \frac{{AB}}{{CA}}\] (tỉ số cạnh tương ứng), do đó \[BH = \frac{{AB}}{{AC}} \cdot AH = \frac{6}{8} \cdot 4,8 = 3,6{\rm{\;cm}}.\]
Khi đó \[HC = BC - BH = 10 - 3,6 = 6,4{\rm{\;cm}}.\]
⦁ Ta có \(CD\) là phân giác \(\widehat {ACB}\) nên \(\frac{{CA}}{{CB}} = \frac{{DA}}{{DB}},\) do đó \[\frac{{AC}}{{AD}} = \frac{{BC}}{{BD}}.\]
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\[\frac{{AC}}{{AD}} = \frac{{BC}}{{BD}} = \frac{{AC + BC}}{{AD + BD}} = \frac{{AC + BC}}{{AB}} = \frac{{8 + 10}}{6} = 3.\]
Suy ra \(AD = \frac{{AC}}{3} = \frac{8}{3}{\rm{\;cm}}\) và \[\frac{{HC}}{{HE}} = \frac{{AC}}{{AD}} = 3.\]
Khi đó \[HE = \frac{{HC}}{3} = \frac{{6,4}}{3} = \frac{{32}}{{15}}.\]
Ta có \[\frac{{{S_{ACD}}}}{{{S_{HCE}}}} = \frac{{\frac{1}{2}AD \cdot AC}}{{\frac{1}{2}HE \cdot HC}} = \frac{{AD \cdot AC}}{{HE \cdot HC}} = \frac{{\frac{8}{3} \cdot 8}}{{\frac{{32}}{{15}} \cdot 6,4}} = \frac{{25}}{{16}}.\]
Vậy tỉ số diện tích của \(\Delta ACD\) và \(\Delta HCE\) là \[\frac{{25}}{{16}}.\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong một cuộc đua xe đạp, anh Nam phải hoàn thành đoạn đường \[48{\rm{ km}}.\] Nửa đoạn đường đầu anh Nam đạp cùng một tốc độ. Nửa đoạn đường còn lại, anh Nam đạp với tốc độ nhỏ hơn lúc đầu 4 km/giờ. Gọi x là tốc độ ở nửa đoạn đường đầu. Hãy viết biểu thức thể hiện thời gian anh Nam đi trong
a) nửa đoạn đường đầu. b) nửa đoạn đường còn lại.
Câu 2:
Cho biểu thức \[A = \frac{{{x^3} - 1}}{{{x^2} - 4}} \cdot \left( {\frac{1}{{x - 1}} - \frac{{x + 1}}{{{x^2} + x + 1}}} \right).\]
a) Viết điều kiện xác định của biểu thức \(A.\)
b) Rút gọn biểu thức \(A.\)
c) Tính giá trị của biểu thức \(A\) biết \(\left| {x + 3} \right| = 1.\)
Câu 3:
Giải các phương trình sau:
a) \( - \frac{1}{2}x + 2 = \frac{5}{2}x - 1\). b) \[3\left( {x - 5} \right) + 5x = 2x - 7.\]
c) \(\frac{{2x - 1}}{3} - \frac{{x + 7}}{4} = \frac{{5 - 3x}}{2}\). d) \({\left( {x - 3} \right)^3} - 2\left( {x - 1} \right) = x{\left( {x - 2} \right)^2} - 5{x^2}\).
Câu 4:
Câu 5:
Nhu cầu mua hàng online hiện nay rất lớn. Để vận chuyển các món hàng đó đến khách hàng tiêu dùng, không ai khác chính là shipper. Ngày 05/01/2025, công ty ABC tính nhờ các shipper vận chuyển đến khách hàng. Mỗi shipper vận chuyển 30 món hàng. Sau khi tính toán lại, mỗi shipper vận chuyển 36 món hàng. Do đó, số shipper vận chuyển giảm đi 3 người. Tính số món hàng ngày 05/01/2025 công ty ABC giao cho khách.
Đề kiểm tra Cuối kì 1 Toán 8 KNTT có đáp án (Đề 1)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn gắn với việc vận dụng định lí Thalès (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích, diện tích xung quanh của hình chóp tứ giác đều (có lời giải)
10 Bài tập Nhận biết hai hình đồng dạng, hai hình đồng dạng phối cảnh (có lời giải)
10 Bài tập Các bài toán thực tiễn gắn với việc vận dụng định lí Pythagore (có lời giải)
Cách tìm mẫu thức chung cực hay, nhanh nhất
10 Bài tập Ứng dụng của xác suất thực nghiệm trong một số bài toán đơn giản (có lời giải)
về câu hỏi!