Câu hỏi:

12/04/2025 248

Cho tam giác \(ABC\) vuông tại \(A\)\(\widehat B = 60^\circ \). Trên \(BC\) lấy điểm \(H\) sao cho \(HB = BA\), từ \(H\) kẻ \(HE\) vuông góc với \(BC\) tại \(H\) \(\left( {E \in AC} \right)\). Gọi \(K\) là giao điểm của \(BA\)\(HE\)

 a) \(\widehat {ACB} = 60^\circ \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 a) \(\widehat {ACB} = 60^\circ \). (ảnh 1)

a) Xét tam giác \(ABC\), ta có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (tổng ba góc trong tam giác)

Suy ra, \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {90^\circ + 60^\circ } \right) = 30^\circ \).

Do đó, \(\widehat {ACB} = 30^\circ \).

Câu hỏi cùng đoạn

Câu 2:

b) \(\Delta ABE = \Delta EBH\).

Xem lời giải

verified Lời giải của GV VietJack

S

b) Xét \(\Delta ABE\)\(\Delta EBH\), ta có:

\(\widehat {EAB} = \widehat {EHB} = 90^\circ \) (gt)

\(AB = HB\) (gt)

\(EB\) chung (gt)

Do đó, \(\Delta ABE = \Delta HBE\) (ch – cgv)

Câu 3:

 c) \(BE\) là phân giác của \(\widehat B\).

Xem lời giải

verified Lời giải của GV VietJack

Đ

c) Có \(\Delta ABE = \Delta HBE\) (ch – cgv) nên \(\widehat {ABE} = \widehat {HBE}\) (hai góc tương ứng).

Do đó, \(BE\) là phân giác của \(\widehat B\).

Câu 4:

d) \(BE\) vuông góc với \(KC.\)

Xem lời giải

verified Lời giải của GV VietJack

Đ

d) Xét tam giác \(KBC\)\(CA \bot KB\) (gt), \(KH \bot BC\) (gt)

\(KH\) cắt \(CA\)\(E\).

Do đó, \(E\) là trực tâm của tam giác \(KBC\).

Từ đây suy ra \(BE\) vuông góc với \(KC.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Chứng minh \(\Delta ABM = \Delta ACM.\) (ảnh 1)

a) Xét \(\Delta ABM\)\(\Delta ACM\), ta có:

\(AB = AC\) (\(\Delta ABC\) cân tại \(A\))

\(MB = MC\) (\(M\) là trung điểm của \(BC\))

\(AM\) là cạnh chung

Do đó, \(\Delta ABM = \Delta ACM\) (c.c.c)

Lời giải

Đ

a) Do các thẻ được đánh số từ 1 đến 5 nên biến cố “Thẻ rút ra được đánh số lớn hơn 1” là biến cố ngẫu nhiên.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP