Câu hỏi:

12/04/2025 29

Câu 27-29. (1,5 điểm) Cho tam giác \(ABC\) cân tại \(B,\widehat {ABC} = 80^\circ \). Lấy điểm \(I\) ở bên trong tam giác sao cho \(\widehat {IAC} = 10^\circ ,\widehat {ICA} = 30^\circ .\) Đường phân giác của \(\widehat {BAI}\) cắt đường thẳng \(CI\) tại \(K\)

a) Chứng minh tam giác \(ACK\) cân tại \(K.\)

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh tam giác \(ACK\) cân tại \(K.\) (ảnh 1)

a) Vì tam giác \(ABC\) cân tại \(B,\)\(\widehat {ABC} = 80^\circ \) nên \(\widehat {BAC} = \widehat {ACB} = \frac{{180^\circ - 80^\circ }}{2} = 50^\circ \).

Ta có \(\widehat {IAC} = 10^\circ \) nên \(\widehat {IAB} = \widehat {CAB} - \widehat {IAC} = 50^\circ - 10^\circ = 40^\circ \).

\(AK\) là đường phân giác của \(\widehat {IAB}\) nên \(\widehat {BAK} = \widehat {KAI} = 20^\circ \).

Do đó, \(\widehat {KAC} = \widehat {KAI} + \widehat {IAC} = 20^\circ + 10^\circ = 30^\circ = \widehat {KCA}\)

Suy ra \(\widehat {CAK} = \widehat {KAC} = 30^\circ \) nên \(\Delta ACK\) cân tại \(K.\)

Câu hỏi cùng đoạn

Câu 2:

b) Chứng minh \(\Delta ABK = \Delta CBK\). Suy ra \(BK\) là phân giác của góc \(ABC\).

Xem lời giải

verified Lời giải của GV VietJack

b) Có \(\Delta ACK\) cân tại \(K\) nên \(KA = KC.\)

Xét \(\Delta ABK\)\(\Delta CBK\) có: \(AB = BC\) (gt), \(BK\) chung, \(KA = KC\).

Do đó, \(\Delta ABK = \Delta CBK\) (c.c.c).

Suy ra \(\widehat {ABK} = \widehat {CBK}\) (hai góc tương ứng).

Do đó, \(BK\) là phân giác của góc \(ABC\).

Câu 3:

c) Tính số đo \(\widehat {AIB}\).

Xem lời giải

verified Lời giải của GV VietJack

c) Từ b) \(\Delta ABK = \Delta CBK\) (c.c.c) nên \(\widehat {AKB} = \widehat {CKB}\) (hai góc tương ứng)

\(BK\) là phân giác của góc \(ABC\) nên \(\widehat {ABK} = \widehat {CBK} = \frac{{\widehat {ABC}}}{2} = 40^\circ \).

Do đó, \(\widehat {AKB} = \widehat {CKB} = 180^\circ - \left( {\widehat {KAB} + \widehat {KBA}} \right) = 180^\circ - \left( {40^\circ + 20^\circ } \right) = 120^\circ \).

Lại có \(\widehat {AKB} + \widehat {CKB} + \widehat {AKC} = 360^\circ \) nên \(\widehat {CKA} = 360^\circ - 2.120^\circ = 120^\circ \).

Do đó, \(\widehat {AKB} = \widehat {CKB} = \widehat {CKA}\).

Xét \(\Delta AKB\)\(\Delta AKI\), có: \(\widehat {KAB} = \widehat {KAI}\) (gt); \(AK\) chung (gt); \(\widehat {AKB} = \widehat {CKA}\) (cmt)

Do đó, \(\Delta AKB = \Delta AKI\) (g.c.g)

Suy ra \(AB = AI\) (hai cạnh tương ứng)

Do đó, \(\Delta AIB\) cân tại \(A\) nên \(\widehat {ABI} = \widehat {AIB} = \frac{{180^\circ - \widehat {BAI}}}{2} = \frac{{180^\circ - 40^\circ }}{2} = 70^\circ \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Biến cố “Mặt xuất hiện có số chấm nhỏ hơn 8” là biến cố chắc chắn.

Xem đáp án » 12/04/2025 64

Câu 2:

Bạn Bình đã lấy một miếng bìa hình tam giác và đặt đầu nhọn của chiếc bút chì vào điểm \(H\) trên hình tam giác thì mấy miếng bìa cân bằng trên đầu bút. Hỏi bạn Bình đã xác định vị trí điểm \(H\) bằng cách nào?

Xem đáp án » 12/04/2025 58

Câu 3:

a) \(\Delta ABM = \Delta AMC.\)

Xem đáp án » 12/04/2025 49

Câu 4:

Chọn ngẫu nhiên một số có hai chữ số. Tính xác suất để số được chọn chia hết cho \(2\) mà không chia hết cho \(5\). (Kết quả ghi dưới dạng số thập phân)

Xem đáp án » 12/04/2025 38

Câu 5:

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Từ \(2.4 = \left( { - 1} \right).\left( { - 8} \right)\), ta có tỉ lệ thức

Xem đáp án » 12/04/2025 22

Câu 6:

Bậc của đa thức \(11{x^{10}} + x + 5{x^3} - 3{x^4} - 11{x^{10}} - 3{x^5} - 6\)

Xem đáp án » 12/04/2025 21
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua