Câu26 - 28. (1,5 điểm) Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\), đường cao \(AH\) \(\left( {H \in BC} \right)\).
a) Chứng minh và
Câu26 - 28. (1,5 điểm) Cho tam giác \(ABC\) vuông tại \(A\) \(\left( {AB < AC} \right)\), đường cao \(AH\) \(\left( {H \in BC} \right)\).
Quảng cáo
Trả lời:

a) Xét \(\Delta ABC\) và \(\Delta BHA\) có: \(\widehat {BAC} = \widehat {BHA} = 90^\circ \) (gt); \(\widehat {CBA}\) chung (gt)
Suy ra (g.g)Do đó, \(\frac{{AB}}{{HB}} = \frac{{AC}}{{HA}}\) nên \(AB.AH = AC.HB\) (đpcm).
Câu hỏi cùng đoạn
Câu 2:
b) Chứng minh rằng \(A{H^2} = BH.CH.\)
b) Chứng minh rằng \(A{H^2} = BH.CH.\)

b) Vì (cmt) suy ra \(\widehat {ACB} = \widehat {HAB}\) (hai góc tương ứng)
Xét \(\Delta BHA\) và \(\Delta CHA\), có:
\(\widehat {HAB} = \widehat {HCA}\) (cmt) và \(\widehat {AHB} = \widehat {CHA} = 90^\circ \) (gt)
Suy ra (g.g)
Suy ra \(\frac{{AH}}{{CH}} = \frac{{HB}}{{HA}}\) hay \(A{H^2} = BH.CH\).
Câu 3:
c) Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(BC.\) Chứng minh: \(\frac{1}{4}CH.CB = M{N^2}.\)
c) Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(BC.\) Chứng minh: \(\frac{1}{4}CH.CB = M{N^2}.\)

c) Có \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(BC\) nên \(MN\) là đường trung bình của \(\Delta ABC\).
Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat {CAB} = \widehat {AHC} = 90^\circ \) (gt)
\(\widehat {ACB}\) chung (gt)
Do đó, (g.g)Suy ra \(\frac{{AC}}{{CH}} = \frac{{CB}}{{CA}}\) hay \(A{C^2} = CH.CB\).
Lại có \(MN\) là đường trung bình của \(\Delta ABC\) nên \(MN = \frac{1}{2}AC\) hay \(AC = 2MN\).
Suy ra \(4M{N^2} = CH.CB\) hay \(\frac{1}{4}CH.CB = M{N^2}\) (đpcm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đ
a) Với \(m = 0\) thì ta có: \(\left( {d'} \right):y = - 2x + 2.\)
Nhận thấy lúc này hai hệ số góc của hai đường thẳng khác nhau, do đó \(\left( d \right),\left( {d'} \right)\) cắt nhau.
Lời giải
Hướng dẫn giải
Đáp án: \(2\)
Vì \(\left( {{d_1}} \right)\parallel \left( {{d_2}} \right)\) nên ta có: \(\left\{ \begin{array}{l}2 - {m^2} = 2{\rm{ (1)}}\\ - m - 5 \ne 2m + 1{\rm{ (2)}}\end{array} \right.\)
Giải (1) ta có: \(2 - {m^2} = 2\) nên \({m^2} = 4\), suy ra \(m = 2\) hoặc \(m = - 2.\)
Giải (2) ta có: \( - m - 5 \ne 2m + 1\) nên \( - m - 2m \ne 5 + 1\) hay \( - 3m \ne 6\) suy ra \(m \ne - 2\).
Do đó, giá trị thỏa mãn là \(m = 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.