Câu hỏi:
22/04/2025 364Câu 26-28. (1,5 điểm) Cho tam giác \[ABC{\rm{ }}\left( {AB < AC} \right)\] vuông tại \[A\] có đường cao \[AH.\]
a) Chứng minh rằng
Quảng cáo
Trả lời:
a) Xét \(\Delta ABC\) và \(\Delta HAC\), có: \(\widehat {BAC} = \widehat {AHC} = 90^\circ \) (gt) và \(\widehat {ACB} = \widehat {HCA}\) (gt)
Do đó, (G.G)Câu hỏi cùng đoạn
Câu 2:
b) Lấy điểm \(I\) thuộc đoạn \(AH\) (\(I\)không trùng với \[A,H\]). Qua \[B\] kẻ đường thẳng vuông góc với \[CI\] tại \[K\]. Chứng minh rằng \[CH.CB = CI.CK.\]
Lời giải của GV VietJack
b) Xét \(\Delta CHI\) và \(\Delta CKB\), ta có:
\(\widehat {CHI} = \widehat {CKB} = 90^\circ \) (gt)
\(\widehat {HCI} = \widehat {KCB}\)
Do đó, (g.g)Suy ra \(\frac{{CH}}{{CK}} = \frac{{CI}}{{CB}}\).
Suy ra \(CH.CB = CI.CK\).
Câu 3:
c) Tia \[BK\] cắt tia \[HA\] tại điểm \[D.\] Chứng minh \[CH.CB + DK.DB = C{D^2}.\]
Lời giải của GV VietJack
c) Gọi \(M\) là giao điểm của \(BI\) và \(DC\). Vì \(I\) là trực tâm của \(\Delta BDC\) nên \(BI \bot DC\).
Xét \(\Delta CMI\) và \(\Delta CDK\), ta có: \(\widehat {CMI} = \widehat {CKD} = 90^\circ \) (gt) và \(\widehat {MCI} = \widehat {DCK}\) (gt)
Suy ra (g.g)Suy ra \(\frac{{CM}}{{CK}} = \frac{{CI}}{{CD}}\) nên \(CD.CM = CI.CK\).
Mà từ phần b) ta có: \(CH.CB = CI.CK\) suy ra \(CH.CB = CI.CK = CD.CM.\)
Chứng minh được (g.g) suy ra \(DK.DB = DM.DC\).
Do đó, \(CH.CB + DK.DB = CM.CD + DM.DC = DC\left( {MD + MC} \right) = D{C^2}\).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đ
a) Nhận thấy hệ số góc của hai đường thẳng khác nhau \(\left( {4 \ne - 3} \right)\) nên hai đường thẳng luôn cắt nhau với mọi \(m.\)
Lời giải
Hướng dẫn giải
Đáp án: \(1\)
Gọi đường thẳng cần tìm là \(\left( d \right):y = ax + b\).
Ta có: \(A\left( {1;2} \right) \in \left( d \right)\) nên \(a + b = 2\) suy ra \(b = 2 - a\) (1)
\(B\left( {3;4} \right) \in \left( d \right)\) nên \(3a + b = 4\) suy ra \(b = 4 - 3a\) (2)
Từ (1) và (2) ta có: \(2 - a = 4 - 3a\) suy ra \(2a = 2\) nên \(a = 1\).
Vậy hệ số góc của đường thẳng đó là \(1.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
15 câu Trắc nghiệm Toán 8 Kết nối tri thức Bài 1: Đơn thức có đáp án
15 câu Trắc nghiệm Toán 8 Chân trời sáng tạo Bài 1: Đơn thức và đa thức nhiều biến có đáp án
Bộ 10 đề thi cuối kì 2 Toán 8 Kết nối tri thức cấu trúc mới có đáp án (Đề 1)
15 câu Trắc nghiệm Toán 8 Cánh diều Bài 1: Đơn thức nhiều biến. Đa thức nhiều biến có đáp án
10 Bài tập Nhận biết đơn thức, đơn thức thu gọn, hệ số, phần biến và bậc của đơn thức (có lời giải)
Bộ 10 đề thi giữa kì 2 Toán 8 Cánh diều cấu trúc mới có đáp án (Đề 5)
Dạng 8: Bài luyện tập 3 dạng 4. Tổng hợp có đáp án
Dạng 2: Bài luyện tập 1 Dạng 2: Rút gọn phân thức có đáp án