Câu hỏi:

22/04/2025 194

Câu 26-28. (1,5 điểm) Cho tam giác \(ABC\) nhọn \(\left( {AB < AC} \right)\), đường cao \(AD{\rm{ }}\left( {D \in BC} \right)\). Gọi \(E,F\) lần lượt là hình chiếu của \(D\) trên \(AB\)\(AC\).

a) Chứng minh \(AE.AB = A{D^2} = AF.AC\)\(\widehat {AFE} = \widehat {ABC}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

d (ảnh 1)

a) Xét \(\Delta AED\)\(\Delta ADB\) có:

\(\widehat A\) chung

\(\widehat {AED} = \widehat {ADB} = 90^\circ \)

Suy ra ΔAEDΔADB (g.g)

Suy ra \(\frac{{AE}}{{AD}} = \frac{{AD}}{{AB}}\), suy ra \(AE.AB = A{D^2}\) (1)

Xét \(\Delta AFD\)\(\Delta ADC\) có:

\(\widehat A\) chung

\(\widehat {AFD} = \widehat {ADC} = 90^\circ \) (gt)

Suy ra ΔAFDΔADC (g.g)

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AD}}{{AC}}\) suy ra \(AF.AC = A{D^2}\) (2)

Từ (1) và (2) suy ra \(AE.AB = A{D^2} = AF.AC.\)

Do đó, \(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\).

Xét \(\Delta AEF\)\(\Delta ACB\)có:

\(\widehat A\) chung

\(\frac{{AE}}{{AF}} = \frac{{AC}}{{AB}}\) (cmt)

Suy ra ΔAEFΔACB (c.g.c)

Suy ra \(\widehat {AEF} = \widehat {ACB}\).

Câu hỏi cùng đoạn

Câu 2:

b) Gọi \(I\) là giao điểm của \(FE\) và tia \(CB\). Chứng minh \(I{D^2} = IE.IF\).

Xem lời giải

verified Lời giải của GV VietJack

b) Vì ΔAEFΔACB  (cmt) suy ra AEF^=ACB^

\(\widehat {AEF} = \widehat {IEB}\) (2 góc đối đỉnh)

Suy ra \(\widehat {ACB} = \widehat {IEB}\) (3)

Ta có: \(\widehat {IDF} = \widehat {DFC} + \widehat {ACB}\) (góc ngoài tam giác \(DFC\))

Suy ra \(\widehat {IDF} = 90^\circ + \widehat {ACB}\) (4)

\(\widehat {IED} = \widehat {IEB} + \widehat {BED} = \widehat {IEB} + 90^\circ \) (5)

Từ (3), (4), (5) suy ra \(\widehat {IDF} = \widehat {IED}\).

Xét \(\Delta IED\)\(\Delta IDF\) có:

\(\widehat I\) chung

\(\widehat {IED} = \widehat {IDF}\) (cmt)

Suy ra ΔIEDΔIDF (g.g)

Suy ra \(\frac{{IE}}{{ID}} = \frac{{ID}}{{IF}}\) nên \(I{D^2} = IE.IF\) (đpcm)

Câu 3:

c) Gọi \(H\) là trực tâm của \(\Delta ABC,\) tia \(HB\) cắt \(EF\) tại \(K.\) Chứng minh \(DK \bot BH.\)

Xem lời giải

verified Lời giải của GV VietJack

d) Vì \(H\) là trực tâm của \(\Delta ABC\) nên \(BH \bot AC\).

\(DF \bot AC\) nên \(BH\parallel DF\), suy ra \(\widehat {EFD} = \widehat {EKB}\) (hai góc đồng vị) (6)

Theo câu b) ta có ΔIEDΔIDF nên \(\widehat {IDE} = \widehat {IFD}\) suy ra \(\widehat {BDE} = \widehat {EFD}\) (7)

Từ (6) và (7) suy ra \(\widehat {EKB} = \widehat {BDE}\).

Gọi \(L\) là giao điểm của \(BK\)\(ED\).

Xét \(\Delta EKL\)\(\Delta BDL\) có:

\(\widehat {EKL} = \widehat {LDB}\) (cmt)

\(\widehat {ELK} = \widehat {DLB}\) (đối đỉnh)

Suy ra ΔEKLΔBDL(g.g)

Suy ra \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\).

Xét \(\Delta EBL\)\(\Delta KDL\) có:  \(\frac{{EL}}{{LB}} = \frac{{KL}}{{LD}}\) (cmt) và \(\widehat {ELB} = \widehat {DLK}\) (2 góc đối đỉnh)

Suy ra ΔEBLΔKDL (g.g)

Suy ra \(\widehat {DKL} = \widehat {BEL} = 90^\circ \) hay \(DK \bot BH\) tại \(K\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Phần 1. (3,0 điểm) Câu trắc nghiệm nhiều phương án lựa chọn

Trong mỗi câu hỏi từ câu 1 đến câu 12, hãy viết chữ cái in hoa đứng trước phương án đúng duy nhất vào bài làm.

Trong các biểu thức sau, biểu thức nào không là phân thức đại số?

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Phân thức đại số là một biểu thức có dạng \(\frac{A}{B}\) trong đó \(A,B\) là hai đa thức và đa thức \(B \ne 0\).

Do đó, \(\frac{{\sqrt x }}{{x - 3}}\) không là phân thức đại số.

Lời giải

S

a) Số kết quả thuận lợi cho biến cố “Chiếc bút lấy ra là bút mực xanh” là: \(30 - 10 = 20\).

Câu 3

Đường thẳng \(y = - 3 - 2x\) có hệ số góc là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho các miếng bìa sau.

Miếng bìa nào sau khi gấp và dán lại thì được một hình chóp tứ giác đều? (ảnh 1) 

Miếng bìa nào sau khi gấp và dán lại thì được một hình chóp tứ giác đều?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay