Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\) là một điểm bất kì trên cạnh huyền \(BC\). Gọi \(D\) và \(E\) lần lượt là chân đường vuông góc kẻ từ \(M\) xuống \(AB\) và \(AC.\) Lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).
a) \(IA = ID\,;\,\,KM = KE.\) b) Tứ giác \(ADME\) là hình chữ nhật.
c) Tứ giác \(ADMC\) là hình thang cân. d) \(DK\,{\rm{//}}\,EI\).
Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\) là một điểm bất kì trên cạnh huyền \(BC\). Gọi \(D\) và \(E\) lần lượt là chân đường vuông góc kẻ từ \(M\) xuống \(AB\) và \(AC.\) Lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).
a) \(IA = ID\,;\,\,KM = KE.\) b) Tứ giác \(ADME\) là hình chữ nhật.
c) Tứ giác \(ADMC\) là hình thang cân. d) \(DK\,{\rm{//}}\,EI\).
Quảng cáo
Trả lời:
Đáp án: a) Sai. b) Đúng. c) Sai. d) Đúng.
⦁ Khi lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).
Suy ra \(AI = AD\,;\,\,MK = ME.\) Do đó ý a) là sai.
⦁ Xét tứ giác \(ADME\) có:
\(\widehat {DAE} = 90^\circ \) (vì \(\Delta ABC\) vuông tại \(A\))
\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)
\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)
Do đó tứ giác \(ADME\) là hình chữ nhật. Do đó ý b) đúng.

⦁ Vì \(AB \bot AC\) (vì \(\Delta ABC\) vuông tại \(A\)); \(MD \bot AB\) nên \(MD\,{\rm{//}}\,AC.\)
Tứ giác \(ADMC\) có \(MD\,{\rm{//}}\,AC\) nên \(ADMC\) là hình thang.
Hình thang \(ADMC\) có \(\widehat {CAD} = 90^\circ \) nên \(ADMC\) là hình thang vuông. Do đó ý c) sai.
⦁ Vì \(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).
Mà \(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]
Suy ra \(DIEK\) là hình bình hành.
Do đó \(DK\,{\rm{//}}\,EI\). Do đó ý d) đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp số: 8.
Ta có \[{x^3} + 6{x^2} + 12x + m = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + m\].
Để biểu thức trên là lập phương của một tổng thì \(m = {2^3} = 8\).
Khi đó, \[{x^3} + 6{x^2} + 12x + 8 = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + {2^3} = {\left( {x + 2} \right)^3}\].
Lời giải
Đáp án đúng là: C
Tứ giác \(IJLK\) không phải là tứ giác lồi vì có hai đỉnh \(I\) và \(J\) cùng thuộc cạnh \(IJ\) nằm về hai phía của đường thẳng \(LK.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.