Câu hỏi:

19/08/2025 51 Lưu

Để biểu thức \[{x^3} + 6{x^2} + 12x + m\] là lập phương của một tổng thì giá trị của \(m\) là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp số: 8.

Ta có \[{x^3} + 6{x^2} + 12x + m = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + m\].

Để biểu thức trên là lập phương của một tổng thì \(m = {2^3} = 8\).

Khi đó, \[{x^3} + 6{x^2} + 12x + 8 = {x^3} + 3 \cdot {x^2} \cdot 2 + 3 \cdot x \cdot {2^2} + {2^3} = {\left( {x + 2} \right)^3}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án:      a) Sai.        b) Đúng.     c) Sai.        d) Đúng.

Khi lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).

Suy ra \(AI = AD\,;\,\,MK = ME.\) Do đó ý a) là sai.

Xét tứ giác \(ADME\) có:

\(\widehat {DAE} = 90^\circ \) (\(\Delta ABC\) vuông tại \(A\))

\(\widehat {ADM} = 90^\circ \) \(\left( {MD \bot AB} \right)\)

\(\widehat {AEM} = 90^\circ \) \(\left( {ME \bot AC} \right)\)

Do đó tứ giác \(ADME\) là hình chữ nhật. Do đó ý b) đúng.

Cho tam giác \(ABC\) vuông tại \(A\). Gọi \(M\) là một điểm bất kì trên cạnh huyền \(BC\). Gọi \(D\) và \(E\) lần lượt là chân đường vuông góc kẻ từ \(M\) xuống \(AB\) và \(AC.\) Lấy điểm \(I\) sao cho \(A\) là trung điểm của \(ID\); điểm \(K\) sao cho \(M\) là trung điểm của \(EK\).  a) \(IA = ID\,;\,\,KM = KE.\)                              b) Tứ giác \(ADME\) là hình chữ nhật.  c) Tứ giác \(ADMC\) là hình thang cân.                 d) \(DK\,{\rm{//}}\,EI\). (ảnh 1)

Vì \(AB \bot AC\) (\(\Delta ABC\) vuông tại \(A\)); \(MD \bot AB\) nên \(MD\,{\rm{//}}\,AC.\)

Tứ giác \(ADMC\) có \(MD\,{\rm{//}}\,AC\) nên \(ADMC\) là hình thang.

Hình thang \(ADMC\) có \(\widehat {CAD} = 90^\circ \) nên \(ADMC\) là hình thang vuông. Do đó ý c) sai.

\(ADME\) là hình chữ nhật nên \(AD = ME\,;\,\,AD\,{\rm{//}}\,ME\) (tính chất hình chữ nhật).

\(A\) là trung điểm của \(DI\); \(M\) là trung điểm của \(KE\) nên \[DI = KE;\,\,DI\,{\rm{//}}\,KE.\]

Suy ra \(DIEK\) là hình bình hành.

Do đó \(DK\,{\rm{//}}\,EI\). Do đó ý d) đúng.

Câu 2

A. Tứ giác \(ABCD.\)   

B. Tứ giác \(EFHG.\)    
C. Tứ giác \(IJLK.\)  
D. Tứ giác \(MNPO.\)

Lời giải

Đáp án đúng là: C

Tứ giác \(IJLK\) không phải là tứ giác lồi vì có hai đỉnh \(I\) và \(J\) cùng thuộc cạnh \(IJ\) nằm về hai phía của đường thẳng \(LK.\)

Câu 3

A. có hai đường chéo bằng nhau.

B. có hai cạnh kề bằng nhau.

C. có hai đường chéo cắt nhau tại trung điểm mỗi đường.

D. có hai cạnh đối bằng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \({\left( {N - M} \right)^2}\).                                                              

B. \({M^2} - 2MN + {N^2}\).          

C. \({N^2} - 2NM + {M^2}\).                                                                   
D. Cả A, B, C đều đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(90^\circ \).             

B. \(120^\circ \).            
C. \(180^\circ \).       
D. \(360^\circ \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{2x}}{y}\).    

B. \(3x + 2y\).                      
C. \(4\left( {x - y} \right)\).    
D. \( - \frac{2}{3}x{y^2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP