Câu hỏi:

10/09/2025 9 Lưu

Cho tứ giác \(ABCD\)\(AB\,{\rm{//}}\,CD,\;AB = CD,\;\widehat A - \widehat B = 50^\circ .\)

          a) Tứ giác \(ABCD\) là hình bình hành.

          b) \(\widehat A + \widehat B = 190^\circ .\)

          c) \(\widehat C = 110^\circ .\)

          d) \(\widehat D = 70^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

vvvvvv (ảnh 1)

a) Đúng.

Tứ giác \(ABCD\) có: \(AB\,{\rm{//}}\,CD,\;AB = CD\) nên tứ giác \(ABCD\) là hình bình hành.

b) Sai.

tứ giác \(ABCD\) là hình bình hành nên \(AD\,{\rm{//}}\,BC.\)

Kẻ \(Bk\) là tia đối của tia \(BA.\) Ta có: \(\widehat {ABC} + \widehat {CBk} = 180^\circ \) (hai góc kề bù).

\(AD\,{\rm{//}}\,BC\) nên \(\widehat A = \widehat {CBk}\) (hai góc đồng vị). Do đó, \(\widehat {ABC} + \widehat A = 180^\circ .\)

c) Sai.

Theo giả thiết: \(\widehat A - \widehat {ABC} = 50^\circ \) nên \(\widehat {ABC} = \widehat A - 50^\circ .\)

Theo phần b ta có: \(\widehat {ABC} + \widehat A = 180^\circ \) nên \(\widehat A - 50^\circ + \widehat A = 180^\circ .\) Suy ra \(\widehat A = 115^\circ .\)

tứ giác \(ABCD\) là hình bình hành nên \(\widehat C = \widehat A = 115^\circ .\) Vậy \(\widehat C = 115^\circ .\)

d) Sai.

Ta có: \(\widehat {ABC} = \widehat A - 50^\circ = 115^\circ - 50^\circ = 65^\circ .\)

tứ giác \(ABCD\) là hình bình hành nên \(\widehat D = \widehat B = 65^\circ .\) Vậy \(\widehat D = 65^\circ .\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: \(150\)

Tứ giác \(ABCD\)\(O\) là giao điểm của \(AC\)\(BD.\) \(O\) là trung điểm của \(AC\)\(BD.\)

Do đó, tứ giác \(ABCD\) là hình bình hành. Suy ra \(DC = AB = 150\;{\rm{m}}{\rm{.}}\) Vậy \(AB = 150\;{\rm{m}}{\rm{.}}\)

Lời giải

Đáp án: \(3\)

vvvvv (ảnh 1)

Do \(AB = AC = 1,5\;{\rm{cm}}\) nên tam giác \(ABC\) cân tại \(A.\) Do đó, \(\widehat {ABC} = \widehat {ACB}.\)

\(\widehat {ABC} = \widehat {EMC}\) (do \(EM\;{\rm{//}}\;AB\) và hai góc này ở vị trí đồng vị) nên \(\widehat {EMC} = \widehat {ACB}.\)

Do đó, tam giác \(ECM\) cân tại \(E.\) Suy ra \(ME = CE.\)

Tứ giác \(ADME\)\(EM\;{\rm{//}}\;AD,\;DM\;{\rm{//}}\;AE\) nên tứ giác \(ADME\) là hình bình hành.

Do đó, chu vi hình bình hành \(ADME\) là: \(2\left( {AE + ME} \right) = 2\left( {AE + CE} \right) = 2AC = 3\;\left( {{\rm{cm}}} \right).\)

Vậy chu hình bình hành \(ADME\)\(3\;{\rm{cm}}{\rm{.}}\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP