Câu hỏi:

10/09/2025 1 Lưu

Cho hình vẽ sau.

Hãy chọn khẳng định sai. (ảnh 1)

Hãy chọn khẳng định sai.          

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

• Nhận thấy tứ giác \(ABCD\) có hai đường chéo \(AC,BD\) cắt nhau tại giao điểm \(O\) cũng chính là trung điểm mỗi đường. Do đó, \(ABCD\) là hình bình hành.

• Xét \(\Delta ABC\)\(\Delta CDA\) có: \(AC\) chung (gt)

                                             \(AD = BC\) (\(ABCD\) là hình bình hành)

                                             \(AB = DC\) (\(ABCD\) là hình bình hành).

Do đó, \(\Delta ABC = \Delta CDA\) (c.c.c)

Do đó, chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

vvvvv (ảnh 1)

a) Đúng.

Ta có: \(AB = AD\) (vì \(ABCD\) là hình thoi) và \(\widehat A = 60^\circ \).

Suy ra \(\Delta ABD\) là tam giác đều.

\(BH\) là đường cao trong \(\Delta ABD\) nên đồng thời là đường trung tuyến do đó \(H\) là trung điểm của \(AD\).

b) Đúng.

Xét tứ giác \(ABDE\) có hai đường chéo \(BE\)\(AD\) cắt nhau tại trung điểm \(H\) của mỗi đường.

Do đó, \(ABDE\) là hình bình hành.

Mặt khác \(AD \bot BE\) nên \(ABDE\) là hình thoi.

c) Đúng.

Ta có:

\(ABCD\) là hình thoi suy ra \(DC = AB,DC\parallel AB\). (1)

\(ABDE\) là hình thoi suy ra \(DE = AB,DE\parallel AB\). (2)

Từ (1) và (2) suy ra \(C,D,E\) thẳng hàng (tiền đề Euclid) và \(DC = DE.\)

Vậy \(D\) là trung điểm của \(CE\).

d) Sai.

Kẻ hai đường chéo \(AC\)\(BD\) cắt nhau tại \(I\).

Suy ra \(AC\) vuông góc \(BD\) tại trung điểm \(I\) của mỗi đường (Do \(ABCD\) là hình thoi).

Ta có: \(AC = 2AI\) (vì \(I\) là trung điểm của \(AC\)).

           \(BE = 2BH\) (vì \(H\) là trung điểm của \(BE\)).

\(BH = AI\) (Chứng minh \(\Delta BHA = \Delta AIB\) (ch – gn)) suy ra \(AC = BE.\)

Lời giải

Đáp án đúng là: B

Xét tứ giác \(ABCD\), có: \(\widehat A + \widehat B + \widehat C + \widehat D = 360^\circ \).

Do đó \(\widehat B = 360^\circ - \left( {\widehat A + \widehat D + \widehat C} \right) = 360^\circ - \left( {90^\circ + 90^\circ + 60^\circ } \right) = 120^\circ \).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP