Phần III. Trắc nghiệm trả lời ngắn
Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số\(f(t) = \frac{{5000}}{{1 + 5{e^{ - t}}}},t \ge 0,\)trong đó thời gian \(t\) được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm \(f'(t)\) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (kết quả làm tròn đến hàng phần mười).
Phần III. Trắc nghiệm trả lời ngắn
Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số\(f(t) = \frac{{5000}}{{1 + 5{e^{ - t}}}},t \ge 0,\)trong đó thời gian \(t\) được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm \(f'(t)\) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (kết quả làm tròn đến hàng phần mười).
Quảng cáo
Trả lời:

Ta có: \(f'(t) = \frac{{ - 5000{{\left( {1 + 5{e^{ - t}}} \right)}^\prime }}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)
Tốc độ bán hàng là lớn nhất khi \(f'(t)\) lớn nhất.
Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).
\(h'(t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)
\(\begin{array}{l} = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\\h'(t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0 \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5(tm)\end{array}\)
Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.
Trả lời: 1,6.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\).
Ta có \(f'\left( x \right) = \frac{{{m^2} - m + 1}}{{{{\left( {x + 1} \right)}^2}}} > 0,\forall x \in D\).
Khi đó \(\mathop {\min }\limits_{\left[ {0;1} \right]} f\left( x \right) = f\left( 0 \right) \Leftrightarrow - {m^2} + m = - 2 \Leftrightarrow \left[ \begin{array}{l}m = - 1\\m = 2\end{array} \right.\).
Vậy có 2 giá trị m để giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{x - {m^2} + m}}{{x + 1}}\) trên đoạn \(\left[ {0;1} \right]\) bằng \( - 2\).
Trả lời: 2.
Lời giải
Dựa vào đồ thị hàm số suy ra
a) \(m = - 4\).
b) \(M = 0\).
c)\(M + m = 0 + ( - 4) = - 4\).
d) Với \(\forall x \in \left[ { - 1\,;\, + \infty } \right)\), ta có: \(f\left( x \right) \le 0 \Rightarrow f\left( x \right) + 4 \le 4\) và \(f\left( x \right) + 4 = 4 \Leftrightarrow f\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Vậy, giá trị lớn nhất của hàm số \(y = f\left( x \right) + 4\) trên nửa khoảng \(\left[ { - 1\,;\, + \infty } \right)\) là \(4\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.