Một vật M được gắn vào đầu lò xo và dao động quanh vị trí cân bằng I, biết rằng O là hình chiếu vuông góc của I trên trục Ox, tọa độ điểm M trên Ox tại thời điểm t (giây) là đại lượng s (đơn vị: cm) được tính bởi công thức \(s = 8,6\sin \left( {8t + \frac{\pi }{2}} \right)\). Có bao nhiêu thời điểm trong khoảng 2 giây đầu tiên thì s = 4,3 cm?

Một vật M được gắn vào đầu lò xo và dao động quanh vị trí cân bằng I, biết rằng O là hình chiếu vuông góc của I trên trục Ox, tọa độ điểm M trên Ox tại thời điểm t (giây) là đại lượng s (đơn vị: cm) được tính bởi công thức \(s = 8,6\sin \left( {8t + \frac{\pi }{2}} \right)\). Có bao nhiêu thời điểm trong khoảng 2 giây đầu tiên thì s = 4,3 cm?
Quảng cáo
Trả lời:

Có \(s = 4,3 \Leftrightarrow 8,6\sin \left( {8t + \frac{\pi }{2}} \right) = 4,3\)\( \Leftrightarrow \sin \left( {8t + \frac{\pi }{2}} \right) = \frac{1}{2}\)\( \Leftrightarrow 8t + \frac{\pi }{2} = \frac{\pi }{6} + k2\pi \)\( \Leftrightarrow t = - \frac{\pi }{{24}} + k\frac{\pi }{4}\).
Vì \(t \in \left[ {0;2} \right]\) nên \(0 \le - \frac{\pi }{{24}} + k\frac{\pi }{4} \le 2\)\( \Leftrightarrow \frac{1}{6} \le k \le \frac{8}{\pi } + \frac{1}{6}\).
Mà \(k \in \mathbb{Z}\) nên k = 1; k = 2.
Vậy có 2 thời điểm.
Trả lời: 2.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có \(2\cos x = \sqrt 3 \Leftrightarrow x = \pm \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\).
b) Vì \(x \in \left[ {0;\frac{{5\pi }}{2}} \right]\) nên \(x \in \left\{ {\frac{\pi }{6};\frac{{11\pi }}{6};\frac{{13\pi }}{6}} \right\}\). Suy ra phương trình có 3 nghiệm.
c) Tổng các nghiệm của phương trình trong đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) là
\(\frac{\pi }{6} + \frac{{11\pi }}{6} + \frac{{13\pi }}{6} = \frac{{25\pi }}{6}\).
d) Trong đoạn \(\left[ {0;\frac{{5\pi }}{2}} \right]\) phương trình có nghiệm lớn nhất bằng \(\frac{{13\pi }}{6}\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Câu 2
Lời giải
\(\sin \left( {3x - \frac{{3\pi }}{4}} \right) = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \left[ \begin{array}{l}3x - \frac{{3\pi }}{4} = \frac{\pi }{3} + k2\pi \\3x - \frac{{3\pi }}{4} = \pi - \frac{\pi }{3} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{13\pi }}{{12}} + k2\pi \\3x = \frac{{17\pi }}{{12}} + k2\pi \end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.,k \in \mathbb{Z}\).
TH1: \(x = \frac{{13\pi }}{{36}} + k\frac{{2\pi }}{3}\)
Với \(x > 0\) thì \(k > \frac{{ - 13}}{{24}},k \in \mathbb{Z}\). Suy ra kmin = 0. Do đó \(x = \frac{{13\pi }}{{36}}\).
Với \(x < 0\)thì \(k < \frac{{ - 13}}{{24}},k \in \mathbb{Z}\). Suy ra kmax = −1. Do đó \(x = \frac{{ - 11\pi }}{{36}}\).
TH2: \(x = \frac{{17\pi }}{{36}} + k\frac{{2\pi }}{3}\)
Với \(x > 0\) thì \(k > \frac{{ - 17}}{{24}},k \in \mathbb{Z}\). Suy ra kmin = 0. Do đó \(x = \frac{{17\pi }}{{36}}\).
Với \(x < 0\) thì \(k < \frac{{ - 17}}{{24}},k \in \mathbb{Z}\). Suy ra kmax = −1. Do đó \(x = - \frac{{7\pi }}{{36}}\).
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là \(x = - \frac{{7\pi }}{{36}}\) và nghiệm dương nhỏ nhất là \(x = \frac{{13\pi }}{{36}}.\)
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất là: \( - \frac{{7\pi }}{{36}} + \frac{{13\pi }}{{36}} = \frac{\pi }{6}\). Chọn C.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.