Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, O là giao điểm của AC và BD.
a) Giao điểm của đường thẳng SA và (ABCD) là điểm D.
b) Giao điểm của đường thẳng BD và (SAC) là trung điểm của đoạn thẳng AC.
c) Giao điểm của đường thẳng SO và (ABNM) là điểm D.
d) Gọi E là giao điểm của DM và mặt phẳng (SBC). Khi đó SE = 2BC.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB, O là giao điểm của AC và BD.
a) Giao điểm của đường thẳng SA và (ABCD) là điểm D.
b) Giao điểm của đường thẳng BD và (SAC) là trung điểm của đoạn thẳng AC.
c) Giao điểm của đường thẳng SO và (ABNM) là điểm D.
d) Gọi E là giao điểm của DM và mặt phẳng (SBC). Khi đó SE = 2BC.
Quảng cáo
Trả lời:

a) Có SA Ç (ABCD) = {A}.
b) Có O Î BD và O Î AC Ì (SAC) Þ BD Ç (SAC) = {O}.
c) Có S Î SO và S Î AM Ì (ABNM) Þ SO Ç (ABNM) = {S}.
d) Ta có \(\left\{ \begin{array}{l}S \in \left( {SAD} \right) \cap \left( {SBC} \right)\\AD//BC\\AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\end{array} \right. \Rightarrow \left( {SAD} \right) \cap \left( {SBC} \right) = Sy\left( {Sy//AD//BC} \right)\).
Trong mặt phẳng (SAD), gọi E = Sy Ç DM.
Ta có \(\left\{ \begin{array}{l}E \in Sy \subset \left( {SBC} \right)\\E \in DM\end{array} \right. \Rightarrow E = DM \cap \left( {SBC} \right)\).
Vì M là trung điểm của SA và SE // AD nên tứ giác SEAD là hình bình hành Þ SE = AD = BC.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có NP // AB.
Ta có NP Ì (MNP), AB Ì (ABC), (ABC) và (MNP) có điểm M chung nên giao tuyến của (ABC) và (MNP) là đường thẳng MQ // AB (Q Î AC).
Ta có \(\frac{{QC}}{{QA}} = \frac{{MC}}{{MB}} = 3\).
Trả lời: 3.
Lời giải
a) Tứ giác ABCD là hình bình hành nên AB // CD; AD // BC.
a) Ta có \(\left\{ \begin{array}{l}AB//CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\S \in \left( {SAB} \right) \cap \left( {SCD} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Sx = \left( {SAB} \right) \cap \left( {SCD} \right)\\Sx//AB//CD\end{array} \right.\).
b) Ta có \(\left\{ \begin{array}{l}AD//BC\\AD \subset \left( {SAD} \right)\\BC \subset \left( {SBC} \right)\\S \in \left( {SAD} \right) \cap \left( {SBC} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Sy = \left( {SAD} \right) \cap \left( {SCD} \right)\\Sy//AD//BC\end{array} \right.\).
c) \(\left\{ \begin{array}{l}AB//CD\\AB \subset \left( {MAB} \right)\\CD \subset \left( {SCD} \right)\\M \in \left( {MAB} \right) \cap \left( {SCD} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Mt = \left( {MAB} \right) \cap \left( {SCD} \right)\\Mt//AB//CD\end{array} \right.\).
d) Ta có \(\left\{ \begin{array}{l}AB//CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {NCD} \right)\\N \in \left( {SAB} \right) \cap \left( {NCD} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}Nz = \left( {SAB} \right) \cap \left( {NCD} \right)\\Nz//AB//CD\end{array} \right.\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.