Câu hỏi:

16/09/2025 119 Lưu

Miền không bị gạch (không tính đường thẳng) được cho bởi hình sau là miền nghiệm của bất phương trình nào?
Miền không bị gạch (không tính đường thẳng) được cho bởi hình sau là miền nghiệm của bất phương trình nào?    (ảnh 1)

A. \[2x + y - 6 > 0\].                                                              
B. \[2x + y - 6 < 0\].                                                                                      
C. \[x + 2y - 6 < 0\].                                                              
D. \[x + 2y - 6 > 0\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đường thẳng d đi qua điểm (3; 0) và (0; 6) nên có phương trình \[2x + y - 6 = 0\].

Điểm O(0; 0) không thuộc d thuộc miền nghiệm của bất phương trình.

Do đó đây là miền nghiệm của bất phương trình \[2x + y - 6 < 0\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(A\backslash B = \left( { - 3;0} \right] \cup \left[ {5;10} \right]\) \( \Rightarrow \left( {A\backslash B} \right) \cap \mathbb{Z} = \left\{ { - 2; - 1;0;5;6;7;8;9;10} \right\}\).

Vậy \(\left( {A\backslash B} \right) \cap \mathbb{Z}\) có 9 phần tử.

Trả lời: 9.

Lời giải

a) Ta biểu diễn hai tập hợp A và B trên trục số

Cho ba tập hợp \(A = \left( {1;\frac{{11}}{2}} \right);B = \left[ { - 2;3} \right]\) và \(C = \left( {\frac{{m - 1}}{3}; + \infty } \right)\). a)  (ảnh 1)

Suy ra \(A \cap B = \left( {1;3} \right]\).

b) Ta có \(B \cap \mathbb{N} = \left\{ {0;1;2;3} \right\}\). Suy ra tập hợp \(B \cap \mathbb{N}\) có 4 phần tử.

c) Ta có biểu diễn tập hợp A

Cho ba tập hợp \(A = \left( {1;\frac{{11}}{2}} \right);B = \left[ { - 2;3} \right]\) và \(C = \left( {\frac{{m - 1}}{3}; + \infty } \right)\). a)  (ảnh 2)

Suy ra \(\mathbb{R}\backslash A = \left( { - \infty ;1} \right] \cup \left[ {\frac{{11}}{2}; + \infty } \right)\).

d) Để BC có đúng 3 phần tử là số nguyên khi và chỉ khi \(0 < \frac{{m - 1}}{3} < 1 \Leftrightarrow 1 < m < 4\).

Mà m m {2; 3}. Suy ra tổng các giá trị nguyên của \(m\) là 2 + 3 = 5.

Câu 5

A. \(\left( {1\,;3} \right]\).                                                    
B. \[\left( {3\,;5} \right]\].                     
C. \(\left( { - \infty \,;5} \right]\).                                           
D. \(\left( { - \infty \,;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP