Vào dịp Tết Nguyên đán nhà trường tổ chức Cuộc thi gói bánh chưng và bánh tày thể lệ như sau: Mỗi đội chơi được sử dụng tối đa 240000 đồng để mua nguyên liệu. Các bạn trong đội thi lớp 10A tính toán và thấy rằng để gói một cái bánh chưng mua hết 40000 đồng nguyên liệu và để gói một cái bánh tày mua hết 30000 đồng nguyên liệu. Gọi \(x;y\left( {x,y \in \mathbb{N}} \right)\)lần lượt là số bánh chưng và số bánh tày lớp 10A gói. Khi đó \(x\) và \(y\) thỏa mãn bất phương trình \(ax + 6y \le b\). Tính giá trị biểu thức \(3a - 2b\).
Vào dịp Tết Nguyên đán nhà trường tổ chức Cuộc thi gói bánh chưng và bánh tày thể lệ như sau: Mỗi đội chơi được sử dụng tối đa 240000 đồng để mua nguyên liệu. Các bạn trong đội thi lớp 10A tính toán và thấy rằng để gói một cái bánh chưng mua hết 40000 đồng nguyên liệu và để gói một cái bánh tày mua hết 30000 đồng nguyên liệu. Gọi \(x;y\left( {x,y \in \mathbb{N}} \right)\)lần lượt là số bánh chưng và số bánh tày lớp 10A gói. Khi đó \(x\) và \(y\) thỏa mãn bất phương trình \(ax + 6y \le b\). Tính giá trị biểu thức \(3a - 2b\).
Quảng cáo
Trả lời:

Gọi \(x\) và \(y\) (\(x,y \in \mathbb{N}\)) lần lượt là số bánh chưng và số bánh tày lớp 10A gói.
Số tiền mua nguyên liệu để gói bánh là \(40000x + 30000y\) đồng.
Vì mỗi đội chỉ được sử dụng tối đa 240000 đồng nên ta có \(40000x + 30000y \le 240000\)\( \Leftrightarrow 4x + 3y \le 24\)
Theo giả thiết, bất phương trình có dạng \(ax + 6y \le b\) nên \(4x + 3y \le 24 \Leftrightarrow 8x + 6y \le 48\).
Suy ra a = 8; b = 48. Do đó 3a – 2b = 3.8 – 2.48 = −72
Trả lời: −72.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(A\backslash B = \left( { - 3;0} \right] \cup \left[ {5;10} \right]\) \( \Rightarrow \left( {A\backslash B} \right) \cap \mathbb{Z} = \left\{ { - 2; - 1;0;5;6;7;8;9;10} \right\}\).
Vậy \(\left( {A\backslash B} \right) \cap \mathbb{Z}\) có 9 phần tử.
Trả lời: 9.
Lời giải
a) Ta biểu diễn hai tập hợp A và B trên trục số
![Cho ba tập hợp \(A = \left( {1;\frac{{11}}{2}} \right);B = \left[ { - 2;3} \right]\) và \(C = \left( {\frac{{m - 1}}{3}; + \infty } \right)\). a) (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/09/16-1758595404.png)
Suy ra \(A \cap B = \left( {1;3} \right]\).
b) Ta có \(B \cap \mathbb{N} = \left\{ {0;1;2;3} \right\}\). Suy ra tập hợp \(B \cap \mathbb{N}\) có 4 phần tử.
c) Ta có biểu diễn tập hợp A
![Cho ba tập hợp \(A = \left( {1;\frac{{11}}{2}} \right);B = \left[ { - 2;3} \right]\) và \(C = \left( {\frac{{m - 1}}{3}; + \infty } \right)\). a) (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/09/17-1758595414.png)
Suy ra \(\mathbb{R}\backslash A = \left( { - \infty ;1} \right] \cup \left[ {\frac{{11}}{2}; + \infty } \right)\).
d) Để BC có đúng 3 phần tử là số nguyên khi và chỉ khi \(0 < \frac{{m - 1}}{3} < 1 \Leftrightarrow 1 < m < 4\).
Mà m ℤ m {2; 3}. Suy ra tổng các giá trị nguyên của \(m\) là 2 + 3 = 5.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.