Một con robot xuất phát từ A đi thẳng đến B. Nó được lập trình cứ tiến 6 bước thì lùi lại 2 bước và để đến được B thì con robot đã thực hiện tổng cộng 126 bước. Hỏi khoảng cách từ A đến B dài bao nhiêu mét, biết mỗi bước đi của robot dài \(5{\rm{\;dm}}.\)
Một con robot xuất phát từ A đi thẳng đến B. Nó được lập trình cứ tiến 6 bước thì lùi lại 2 bước và để đến được B thì con robot đã thực hiện tổng cộng 126 bước. Hỏi khoảng cách từ A đến B dài bao nhiêu mét, biết mỗi bước đi của robot dài \(5{\rm{\;dm}}.\)
Quảng cáo
Trả lời:
Hướng dẫn giải
Vì robot được lập trình cứ tiến 6 bước thì lùi 2 bước nên mỗi lượt thực hiện một lập trình, robot đi được quãng đường là: \(6 \cdot 5 - 2 \cdot 5 = 20{\rm{\;dm}}{\rm{.}}\)
Như vậy, mỗi lần thực hiện một lập trình robot đi được quãng đường \(20{\rm{\;dm}}\) và bước tổng \(6 + 2 = 8\) bước.
Ta có: \(126:8 = 15\) dư 6.
Do đó để đến B thì robot đã thực hiện 15 lập trình và bước thêm 6 bước.
Khi đó, quãng đường robot đi được là: \(15 \cdot 20 + 6 \cdot 5 = 330{\rm{\;(dm)}}{\rm{.}}\)
Vậy khoảng cách từ A đến B dài 330 dm.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Ta có:
⦁ \[A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}}\]
\[ = \left( {2 + {2^2} + {2^3} + {2^4}} \right) + \left( {{2^5} + {2^6} + {2^7} + {2^8}} \right) + ... + \left( {{2^{117}} + {2^{118}} + {2^{119}} + {2^{120}}} \right)\] (30 nhóm)
\( = 2 \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + {2^5} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right) + ... + {2^{117}} \cdot \left( {1 + 2 + {2^2} + {2^3}} \right)\)
\( = \left( {1 + 2 + {2^2} + {2^3}} \right) \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)
\( = 15 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)
\( = 3 \cdot 5 \cdot \left( {2 + {2^5} + ... + {2^{117}}} \right)\)
Kết quả trên chia hết cho 3 và 5 nên \(A\,\, \vdots \,\,3,\,\,\,A\,\, \vdots \,\,5.\)
⦁ \(A = 2 + {2^2} + {2^3} + ... + {2^{119}} + {2^{120}} = \left( {2 + {2^2} + {2^3}} \right) + \left( {{2^4} + {2^5} + {2^6}} \right) + ... + \left( {{2^{118}} + {2^{119}} + {2^{120}}} \right)\) (40 nhóm)
\( = 2 \cdot \left( {1 + 2 + {2^2}} \right) + {2^4} \cdot \left( {1 + 2 + {2^2}} \right) + ... + {2^{118}} \cdot \left( {1 + 2 + {2^2}} \right)\)
\( = \left( {1 + 2 + {2^2}} \right) \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\)
\( = 7 \cdot \left( {2 + {2^4} + ... + {2^{118}}} \right)\,\,\, \vdots \,\,\,7.\)
Do đó \(A\,\, \vdots \,\,7.\)
Lời giải
Hướng dẫn giải
Gọi số học sinh của trường đó là \(a\) học sinh \(\left( {a \in \mathbb{N},600 > a > 13} \right)\).
Khi xếp thành 8 hàng, 12 hàng, 15 hàng thì dư lần lượt 6 học sinh, 10 học sinh, 13 học sinh nên ta có \(a - 6\) chia hết cho 8, \(a - 10\) chia hết cho 10; \(a - 13\) chia hết cho 15.
Hay nhận thấy \(\left( {a + 2} \right) \vdots 8\); \(\left( {a + 2} \right) \vdots 10\); \(\left( {a + 2} \right) \vdots 15\).
Do đó, \(\left( {a + 2} \right)\) là BC\(\left( {8,{\rm{ 12, 15}}} \right)\)
Ta có: \(8 = {2^3};{\rm{ }}12 = {2^2} \cdot 3;{\rm{ 1}}5 = 3 \cdot 5\) suy ra BCNN\(\left( {8,{\rm{ 12, 15}}} \right)\)\( = {2^3} \cdot 3 \cdot 5 = 120\).
Do đó, \(a + 2 = 120 \cdot k\) (với \(k\) là số tự nhiên)
Nếu \(k = 0\) thì \(a = - 2\) (loại)
Nếu \(k = 1\) thì \(a = 118\) (loại) (vì 118 không chia hết cho 13)
Nếu \(k = 2\) thì \(a = 238\) (loại) (vì 238 không chia hết cho 13)
Nếu \(k = 3\) thì \(a = 358\) (loại) (vì 358 không chia hết cho 13)
Nếu \(k = 4\) thì \(a = 478\) (loại) (vì 478 không chia hết cho 13)
Nếu \(k = 5\) thì \(a = 598\) (thỏa mãn vì 598 chia hết cho 13).
Nếu \(k = 6\) thì \(a = 718\) (loại vì \(a < 600\)).
Vậy số học sinh của trường này là 598 học sinh.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
