CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi phương trình dao động của vật có dạng: \(x = Ac{\rm{os}}(\omega t + \varphi )\)

Khi đó phương trình vận tốc và gia tốc có biểu thức lần lượt là:

\(v =  - A\omega \sin (\omega t + \varphi )\)

\(a =  - A{\omega ^2}c{\rm{os}}(\omega t + \varphi )\)

Từ đồ thị, ta có:

+ Theo trục hoành ta có thời gian để có một hình sin là 2(s) \( \Rightarrow \) Chu kì của dao động:

\(T = 2s \Rightarrow \omega  = \frac{{2\pi }}{T} = \frac{{2\pi }}{2}\pi {\rm{ (rad/s)}}\)

+ Theo trục tung ta có gia tốc đạt giá trị lớn nhất là \(2{\rm{ m/}}{{\rm{s}}^2}\):

 \({a_{ma{\rm{x}}}} = A{\omega ^2} \Rightarrow A = \frac{{{a_{ma{\rm{x}}}}}}{{{\omega ^2}}} = \frac{{200}}{{{\pi ^2}}} = 20cm\)

+ Khi t = 0 thì a = 0 và gia tốc đang tăng \( \Rightarrow \)li độ x = 0 và đang đi theo chiều âm (vì x và a ngược pha) \( \Rightarrow \) Pha ban đầu của x là: \(\varphi  = \frac{\pi }{2}\)(rad)

Vậy phương trình dao động của vật là: \(x = 20c{\rm{os}}(\pi t + \frac{\pi }{2}){\rm{ (cm)}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\sqrt {\frac{m}{k}} \).                         
B. \(2\pi \sqrt {\frac{k}{m}} \).
C. \(\sqrt {\frac{k}{m}} \).
D. \(\frac{1}{{2\pi }}\sqrt {\frac{k}{m}} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP