Câu hỏi:

09/11/2025 30 Lưu

Các dấu hiệu nhận biết sau, dấu hiệu nào không đủ để kết luận một hình vuông?

A. Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông;

B. Hình thoi có một góc vuông là hình vuông;

C. Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông;

D. Hình thoi có hai đường chéo vuông góc là hình vuông.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Các phương án A, B, C là các khẳng định đúng theo dấu hiệu nhận biết hình vuông.

Phương án D sai vì hình thoi đã có sẵn hai đường chéo vuông góc, hình thoi cần có hai đường chéo bằng nhau thì mới là hình vuông.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(4x{y^2}z\);         
B. \({x^4} - {3^5}\);  
C. \(x{y^2} + xyzt\); 
D. \({x^4} - \frac{1}{2}x{y^3}z\).

Lời giải

Đáp án đúng là: D

Đa thức \({x^4} - \frac{1}{2}x{y^3}z\) có bậc là \(5.\)

Lời giải

Cho hình bình hành ABCD có cạnh AB = 2AD. Gọi M,N lần lượt là trung điểm của AB và CD. (ảnh 1)

a) Do \(ABCD\) là hình bình hành nên \(AB = CD\) và \(AB\,{\rm{//}}\,CD\)

Lại có \[M,{\rm{ }}N\] lần lượt là trung điểm của \[AB\] và \[CD\] nên \(AM = BM = \frac{1}{2}AB\) và \(DN = CN = \frac{1}{2}CD\)

Do đó \(AM = BM = DN = CN\)

Tứ giác \(DMBN\) có \(BM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(BM = DN\) nên \(DMBN\) là hình bình hành.

b) Xét tứ giác \(AMND\) có \(AM\,{\rm{//}}\,DN\) (do \(AB\,{\rm{//}}\,CD)\) và \(AM = DN\) nên \(AMND\) là hình bình hành

Lại có \(AB = 2AD\) nên \(AD = \frac{1}{2}AB\). Suy ra \(AM = AD\)

Hình bình hành \(AMND\) có  \(AM = AD\) nên \(AMND\) là hình thoi

Suy ra đường chéo \(AN\) là đường phân giác của \(\widehat {DAM}\) hay \(\widehat {DAB}.\)

c) Chứng minh tương tự câu a, ta cũng có tứ giác \(AMCN\) là hình bình hành

Suy ra \(AN\,{\rm{//}}\,CM\) hay \(PN\,{\rm{//}}\,QM\)

Do \(DMBN\) là hình bình hành nên \(DM\,{\rm{//}}\,BN\) hay \(PM\,{\rm{//}}\,QN\)

Tứ giác \[PMQN\] có \(PN\,{\rm{//}}\,QM\)và \(PM\,{\rm{//}}\,QN\) nên \[PMQN\] là hình bình hành

Lại có \(AMND\) là hình thoi nên \(AN \bot DM\) hay \(\widehat {MPN} = 90^\circ \)

Do đó hình bình hành \[PMQN\] là hình chữ nhật

Để \[PMQN\] là hình vuông thì \(PM = PN\,\,\,\left( * \right)\)

Mà \(PM = \frac{1}{2}DM\) và \(PN = \frac{1}{2}AN\) (do \(AMND\) là hình thoi nên \(P\) là trung điểm của hai đường chéo)

Do đó để \(\left( * \right)\) xảy ra thì \(DM = AN\) hay hình thoi \(AMND\) là hình vuông, khi đó \(\widehat {DAM} = 90^\circ \)

Hình bình hành \(ABCD\) có \(\widehat {DAM} = 90^\circ \) thì sẽ trở thành hình chữ nhật.

Vậy để \[PMQN\] là hình vuông thì \(ABCD\) phải là hình chữ nhật.

Thật vậy, khi \(ABCD\) là hình vuông thì hình chữ nhật \[PMQN\] có \(PM = PN\) nên là hình vuông.

Câu 3

A. \({x^2} - x =  - x + {x^2}\);              

B. \(x\left( {x - 1} \right) = x - {x^2}\);

C. \({\left( {a - b} \right)^2} =  - {\left( {b - a} \right)^2}\);         
D. \(a - 2 = 2 - a\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \({\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}\);

B. \({\left( { - a - b} \right)^3} =  - {a^3} - 3{a^2}b - 3a{b^2} - {b^3}\);

C. \({\left( { - a + b} \right)^3} =  - {a^3} - 3{a^2}b + 3a{b^2} + {b^3}\);

  D. \({\left( {a - b} \right)^3} = {a^3} - 3{a^2}b + 3a{b^2} - {b^3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Đơn thức \(A\) và đơn thức \(C\);                

B. Đơn thức \(B\) và đơn thức \(C\);

C. Đơn thức \(A\) và đơn thức \(B\);                   

D. Cả ba đơn thức \(A,B,C\) đồng dạng với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP