Một hộp có 40 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số \(1;\,\,2;\,\,3;.....;\,\,39;\,\,40\) với hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên một thẻ trong hộp.
Quảng cáo
Trả lời:
a) Đúng.
Các kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số lẻ”, đó là: \(1;\,\,3;\,\,5;....;\,\,37;\,\,39.\)
Do đó, có \(20\) kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút ra là số lẻ”.
b) Sai.
Các kết quả thuận lợi cho biến cố “Số xuất hiện trên thẻ được rút là bình phương của một số” là:
\(1;\,\,4;\,\,9;\,\,16;\,\,25;\,\,36\).
Do đó, có 6 kết quả thuận lợi cho biến cố này.
c) Sai.
Xác suất của biến cố “Số xuất hiện trên thẻ được rút là bình phương của một số” là: \(\frac{6}{{40}} = \frac{3}{{20}}.\)
d) Đúng.
Kết quả thuận lợi của biến cố: “Số xuất hiện trên thẻ được rút ra là lập phương của một số” là: \(1;\,\,8;\,\,27.\)
Do đó có 3 kết quả thuận lợi cho biến cố này.
Vậy xác suất của biến cố này là \(\frac{3}{{40}} = 0,075.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: A
Số kết quả thuận lợi của biến cố “Quả bóng được lấy ra có màu cam” là 10 (là các quả bóng được đánh số từ 1 đến 10).
Câu 2
Lời giải
Đáp án đúng là: C
Các kết qủa có thể xảy ra khi rút ngẫu nhiên một tấm thẻ từ hộp là 6 kết quả.
Kết quả thuận lợi khi rút được tấm thẻ chia hết cho 3 là: 3; 6.
Do đó, có hai kết quả thuận lợi.
Xác suất để rút được tấm thẻ chia hết cho 3 là: \(\frac{2}{6} = \frac{1}{3}.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.