Câu hỏi:

21/11/2025 26 Lưu

(3,0 điểm) Cho tam giác \(ABC\) có \(AB < AC,\) \(AI\) là đường cao và 3 điểm \(D,\,\,\,E,\,\,\,F\) theo thứ tự là trung điểm của các đoạn thẳng \(AB,\,\,\,AC,\,\,\,BC.\) Lấy điểm \(J\) sao cho \(E\) là trung điểm \[IJ.\]

a) Tứ giác \[AICJ\] là hình gì? Vì sao?

b) Chứng minh tứ giác \(DEFI\) là hình thang cân.

c) \(EB\) và \(FD\) cắt nhau tại \(K.\) Chứng minh hai tứ giác \(ADKE\) và \(KECF\) có diện tích bằng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \(ABC\) có \(AB < AC (ảnh 1)

a) Tứ giác \[AICJ\] có hai đường chéo \(AC\)\(IJ\) cắt nhau tại trung điểm của \[E\] của mỗi đường nên tứ giác \[AICJ\] là hình bình hành (dấu hiệu nhận biết)

Lại có \[\widehat {AIC} = 90^\circ \] (vì \(AI\) là đường cao của tam giác \(ABC)\)

Suy ra tứ giác \[AICJ\] là hình chữ nhật (dấu hiệu nhận biết).

b) Xét \(\Delta ABC\)\(D,\,\,E\) lần lượt là trung điểm của \(AB,\,\,AC\) nên \(DE\) là đường trung bình của tam giác. Do đó \(DE = \frac{1}{2}BC\)\(DE\,{\rm{//}}\,BC\) (tính chất đường trung bình).

\(I,\,\,F \in BC\) nên \(DE\,{\rm{//}}\,IF.\)

Suy ra tứ giác \(DEFI\) là hình thang.

Xét tam giác \(AIC\) vuông tại \(I,\)\(IE\) là đường trung tuyến ứng với cạnh huyền \(AC\) nên \(IE = AE = EC = \frac{1}{2}AC\) (tính chất đường trung tuyến ứng với cạnh huyền) (1)

Xét \(\Delta ABC\)\(D,\,\,F\) lần lượt là trung điểm của \(AB,\,\,BC\) nên \(DF\) là đường trung bình của tam giác. Do đó \(DF\,{\rm{//}}\,AC\)\(DF = \frac{1}{2}AC\) (tính chất đường trung bình) (2)

Từ (1) và (2) ta có \(IE = DF\left( { = \frac{1}{2}AC} \right).\)

Hình thang \(DEFI\) có hai đường chéo \(IE = DF\) nên \(DEFI\) là hình thang cân.

c) Vì \(F\) là trung điểm của \(BC\) nên \(BF = FC = \frac{1}{2}BC\) (tính chất đường trung bình).

\(DE = \frac{1}{2}BC\) (chứng minh ở câu b)

Suy ra \(DE = BF.\)

Xét tứ giác \(BDEF\)\(DE\,{\rm{//}}\,BF\) (do \(DE\,{\rm{//}}\,BC)\)\(DE = BF\) nên \(BDEF\) là hình bình hành.

Do đó hai đường chéo \(EB\)\(FD\) cắt nhau tại trung điểm của mỗi đường.

Suy ra \(K\) là trung điểm của \(FD\). Do đó \(DK = KF.\)

Ta có \(DF\,{\rm{//}}\,AC\)

\(K \in DF,\,\,E \in AC\) nên \(DK\,{\rm{//}}\,AE,\,\,KF\,{\rm{//}}\,EC\)

Do đó hai tứ giác \(ADKE\)\(KECF\) là hình thang.

Từ \(K\) kẻ \(KM \bot AC.\) Khi đó \(KM\) là chiều cao của hình thang \(ADKE\)\(KECF.\)

Ta có: \({S_{ADKE}} = \frac{1}{2} \cdot KM \cdot \left( {DK + AE} \right);\)

\[{S_{KECF}} = \frac{1}{2} \cdot KM \cdot \left( {KF + EC} \right).\]

\(DK = KF\) (chứng minh trên) và \(AE = EC\) (do \(E\) là trung điểm của \(AC)\)

Suy ra \({S_{ADKE}} = {S_{KECF}}\)

Vậy hai tứ giác \(ADKE\)\(KECF\) có cùng diện tích.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\frac{4}{9}.\]    
B. \[\frac{4}{5}.\]    
C. \[\frac{5}{4}.\]        
D. \[\frac{9}{4}.\]

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Hướng dẫn giải  Đáp án đúng là: D (ảnh 1)

\[AD\] là tia phân giác của \[\widehat {BAC}\] nên ta có \[\frac{{DC}}{{DB}} = \frac{{AC}}{{AB}}\] (tính chất tia phân giác của một góc)

Do đó \[\frac{{CD}}{{BD}} = \frac{9}{4}.\]

Vậy ta chọn phương án D.

Lời giải

Hướng dẫn giải

a) \({x^3}y + 2{x^2}y + xy\)

\( = xy \cdot \left( {{x^2} + 2x + 1} \right)\)

\( = xy \cdot {\left( {x + 1} \right)^2}.\)

b) \({x^2} - 9 - 4xy + 4{y^2}\)

\( = \left( {{x^2} - 4xy + 4{y^2}} \right) - 9\)

\( = {\left( {x - 2y} \right)^2} - {3^2}\)

\( = \left( {x - 2y - 3} \right)\left( {x - 2y + 3} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{{AE}}{{ED}} = \frac{{AI}}{{IC}}.\)               
B. \(\frac{{AE}}{{ED}} = \frac{{BF}}{{FC}}.\)
C. \(\frac{{AI}}{{AC}} = \frac{{EI}}{{DC}}.\)      
D. \(\frac{{IC}}{{IA}} = \frac{{IF}}{{AB}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP