Câu hỏi:

28/12/2025 2 Lưu

Vận tốc và gia tốc của con lắc lò xo dao động điều hoà tại các thời điểm t1,t2 có giá trị tương ứng là v1 = 0,12 m/s, v2 = 0,16 m/s, a1= 0,64 m/s2, a2 = 0,48 m/s2. Biên độ và tần số góc dao động của con lắc là:

A.

A = 5 cm, ω = 4 rad/s.

B.

A = 3 cm, ω = 6 rad/s.

C.

A = 4 cm, ω = 5 rad/s.

D.

A = 6 cm, ω = 3 rad/s.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A.

Áp dụng công thức:

\(\left\{ \begin{array}{l}\frac{{0,{{48}^2}}}{{{\omega ^4}}} + \frac{{0,{{16}^2}}}{{{\omega ^2}}} = {A^2}\\\frac{{0,{{64}^2}}}{{{\omega ^4}}} + \frac{{0,{{12}^2}}}{{{\omega ^2}}} = {A^2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A = 0,05\left( m \right)\\\omega = 4\left( {rad/s} \right)\end{array} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: \[{\left( {\frac{a}{{{a_{\max }}}}} \right)^2} + {\left( {\frac{v}{{{v_{\max }}}}} \right)^2} = 1 \Rightarrow {\left( {\frac{{40\sqrt 3 }}{{{a_{\max }}}}} \right)^2} + {\left( {\frac{{10}}{{20}}} \right)^2} = 1\]\[ \Rightarrow {a_{\max }} = 80\,cm/{s^2}\]

\[ \Rightarrow A = \frac{{{{\left( {{v_{\max }}} \right)}^2}}}{{{a_{\max }}}} = \frac{{{{20}^2}}}{{80}} = 5\,cm\]

Lời giải

Từ các công thức: \({a_{\max }} = {\omega ^2}A\) và \({v_{\max }} = \omega A\) suy ra \(\omega = \frac{{{a_{\max }}}}{{{v_{\max }}}} = 10\pi \left( {rad/s} \right)\)

oleObject2.bin

Ta có: \[{v_1} = 1,5 = \frac{{{v_{\max }}}}{2} \Rightarrow x = \pm \frac{{A\sqrt 3 }}{2}\]

Mà thế năng đang giảm nên chọn \[{x_1} = - \frac{{A\sqrt 3 }}{2}\]

Khi \({a_2} = - 15\pi = - \frac{{{a_{\max }}}}{2} \Rightarrow {x_2} = \frac{A}{2}\) (vì sau thời gian ngắn nhất nên chọn \[{x_2} = \frac{A}{2}\])

\( \Rightarrow {t_{ - \frac{{A\sqrt 3 }}{2} \to \frac{A}{2}}} = \frac{T}{6} + \frac{T}{{12}} = \frac{1}{4}.\frac{{2\pi }}{\omega } = 0,05\left( s \right)\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP