Câu hỏi:

20/01/2026 8 Lưu

1) Người ta buộc chú cún bằng sợi dây có một đầu buộc cố định tại điểm \(O\) làm cho chú cún cách điểm \(O\) xa nhất là \(9{\rm{\;m}}.\) Hỏi với các kích thước đã cho như hình trên, chú cún có thể đến các vị trí \(A,\,\,B,\,\,C,\,\,D\) để canh giữ mảnh vườn hình chữ nhật \[ABCD\] hay không?

Người ta buộc chú cún bằng sợi dây có một đầu buộc cố định tại điểm O làm cho chú cún cách điểm O xa nhất là 9m Hỏi với các kích thước đã cho như hình trên, chú cún có thể đến các vị trí A,,B,C,D để canh giữ mảnh vườn hình chữ nhật ABCD hay không? (ảnh 1)

2) Cho tam giác \(ABC\) có ba góc nhọn, các đường cao \(AD,\) \(BE\) cắt nhau tại \(H.\)

a) Chứng minh: ΔADCΔBEC.

b) Chứng minh: \[HE \cdot HB = HA \cdot HD.\]

c) Gọi \(F\) là giao điểm của \(CH\) và \(AB.\) Chứng minh: \[AF \cdot AB = AH \cdot AD.\]

d) Chứng minh: \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}} = 1.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

1) Áp dụng định lí Pythagore cho các tam giác vuông \(AMO,\,\,ONC,\,\,OMD,\,\,OBE,\) ta tính được:

⦁ \(O{A^2} = {3^2} + {4^2} = 25\) hay \(OA = 5{\rm{\;m;}}\)

⦁ \(O{C^2} = {6^2} + {8^2} = 100\) hay \(OC = 10{\rm{\;m}};\)

⦁ \(O{D^2} = {3^2} + {8^2} = 73\) hay \(OD = \sqrt {73} {\rm{\;m}};\)

⦁ \(O{B^2} = {4^2} + {6^2} = 52\) hay \(OB = \sqrt {52} {\rm{\;m}}{\rm{.}}\)

Vì \[OA = 5{\rm{\;m}} < 9{\rm{\;m}},\,\,OD = \sqrt {73} {\rm{\;m}} < 9{\rm{\;m}},\,\,OB = \sqrt {52} {\rm{\;m}} < 9{\rm{\;m}},\,\,OC = 10{\rm{\;m}} > 9{\rm{\;m}}{\rm{,}}\] nên chú cún có thể đến các vị trí \(A,\,\,D,\,\,B\) nhưng không thể đến được vị trí \(C.\)

2)
Người ta buộc chú cún bằng sợi dây có một đầu buộc cố định tại điểm O làm cho chú cún cách điểm O xa nhất là 9m Hỏi với các kích thước đã cho như hình trên, chú cún có thể đến các vị trí A,,B,C,D để canh giữ mảnh vườn hình chữ nhật ABCD hay không? (ảnh 2)

a) Xét \(\Delta ADC\) và \(\Delta BEC\) có:

\(\widehat {ADC} = \widehat {BEC} = 90^\circ \) và \(\widehat {ACB}\) là góc chung.

Do đó ΔADCΔBEC (g.g).

b) Xét \(\Delta HEA\) và \(\Delta HDB\) có:

\(\widehat {HEA} = \widehat {HDB} = 90^\circ \) và \(\widehat {AHE} = \widehat {BHD}\) (đối đỉnh)

Do đó ΔHEAΔHDB (g.g).

Suy ra \(\frac{{HE}}{{HD}} = \frac{{HA}}{{HB}}\) (tỉ số cạnh tương ứng) nên \(HE \cdot HB = HA \cdot HD.\)

c) Vì \(H\) là giao điểm của hai đường cao \(AD,\,\,BE\) của tam giác \(ABC\) nên \(H\) là trực tâm của tam giác, nên \(CH \bot AB,\) hay \(\widehat {AFC} = 90^\circ .\)

Xét \(\Delta AFH\) và \(\Delta ADB\) có:

\(\widehat {AFH} = \widehat {ADB} = 90^\circ \) và \(\widehat {DAB}\) là góc chung

Do đó ΔAFHΔADB (g.g).

Suy ra \(\frac{{AF}}{{AD}} = \frac{{AH}}{{AB}}\) (tỉ số cạnh tương ứng) nên \(AF \cdot AB = AD \cdot AH.\)

d) Ta có \(\frac{{{S_{\Delta BHC}}}}{{{S_{\Delta ABC}}}} = \frac{{\frac{1}{2}HD \cdot BC}}{{\frac{1}{2}AD \cdot BC}} = \frac{{HD}}{{AD}}.\)

Tương tự: \(\frac{{{S_{\Delta AHC}}}}{{{S_{\Delta ABC}}}} = \frac{{HE}}{{BE}};\) \(\frac{{{S_{\Delta AHB}}}}{{{S_{\Delta ABC}}}} = \frac{{HF}}{{CF}}.\)

Khi đó \(\frac{{HD}}{{AD}} + \frac{{HE}}{{BE}} + \frac{{HF}}{{CF}}\)\[ = \frac{{{S_{\Delta AHB}} + {S_{\Delta BHC}} + {S_{\Delta CHA}}}}{{{S_{\Delta ABC}}}} = \frac{{{S_{\Delta ABC}}}}{{{S_{\Delta ABC}}}} = 1.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Ta có: \(M = \frac{{{{\left( {a - 2} \right)}^2}}}{{\left( {b - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {b - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {c - 2} \right)}} + \frac{{{{\left( {c - 2} \right)}^2}}}{{\left( {a - 2} \right)\left( {b - 2} \right)}}\)

\( = \frac{{{{\left( {a - 2} \right)}^3} + {{\left( {b - 2} \right)}^3} + {{\left( {c - 2} \right)}^3}}}{{\left( {a - 2} \right)\left( {b - 2} \right)\left( {c - 2} \right)}}\)

Đặt \(a - 2 = x;\,\,b - 2 = y;\,\,c - 2 = z.\)

Khi đó \(M = \frac{{{x^3} + {y^3} + {z^3}}}{{xyz}}.\)

Mặt khác, từ \(a + b + c = 6\) suy ra \(\left( {a - 2} \right) + \left( {b - 2} \right) + \left( {c - 2} \right) = 0\)

Hay \(x + y + z = 0\)

Suy ra \(x + y =  - z\)

\[{\left( {x + y} \right)^3} = {\left( { - z} \right)^3}\]

\({x^3} + {y^3} + 3xy\left( {x + y} \right) =  - {z^3}\)

\({x^3} + {y^3} + 3xy\left( { - z} \right) =  - {z^3}\)

\({x^3} + {y^3} + {z^3} = 3xyz\)

Do đó \(M = \frac{{{x^3} + {y^3} + {z^3}}}{{xyz}} = \frac{{3xyz}}{{xyz}} = 3.\)

Vậy \(M = 3.\)

Lời giải

Hướng dẫn giải

a) Điều kiện xác định của biểu thức \(M\) là \(\left\{ \begin{array}{l}{x^2} - 2x \ne 0\\x \ne 0\end{array} \right.,\) hay \(\left\{ \begin{array}{l}x\left( {x - 2} \right) \ne 0\\x \ne 0\end{array} \right.,\) tức là \(\left\{ \begin{array}{l}x \ne 0\\x - 2 \ne 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}x \ne 0\\x \ne 2\end{array} \right..\)

b) Với \(x \ne 0\) và \(x \ne 2,\) ta có:

\[M = \frac{1}{{{x^2} - 2x}} \cdot \left( {\frac{{{x^2} + 4}}{x} - 4} \right) + 1 = \frac{1}{{x\left( {x - 2} \right)}} \cdot \left( {\frac{{{x^2} + 4}}{x} - \frac{{4x}}{x}} \right) + 1\]

\[ = \frac{1}{{x\left( {x - 2} \right)}} \cdot \frac{{{x^2} + 4 - 4x}}{x} + 1 = \frac{1}{{x\left( {x - 2} \right)}} \cdot \frac{{{{\left( {x - 2} \right)}^2}}}{x} + 1\]

\[ = \frac{{x - 2}}{{{x^2}}} + \frac{{{x^2}}}{{{x^2}}} = \frac{{{x^2} + x - 2}}{{{x^2}}}.\]

Vậy với \(x \ne 0\) và \(x \ne 2,\) thì \(M = \frac{{{x^2} + x - 2}}{{{x^2}}}.\)

Ta có \[\left| {4 - x} \right| = 2\]

Trường hợp 1. \[4 - x = 2\]

 \(x = 2\) (không thoả mãn).

Trường hợp 1. \[4 - x =  - 2\]

 \(x = 6\) (thoả mãn).

Thay \[x = 6\] vào biểu thức \(M = \frac{{{x^2} + x - 2}}{{{x^2}}},\) ta được: \[M = \frac{{{6^2} + 6 - 2}}{{{6^2}}} = \frac{{36 + 6 - 2}}{{36}} = \frac{{10}}{9}.\]

Vậy \(M = \frac{{10}}{9}\) khi \[\left| {4 - x} \right| = 2.\]

c) Với \(x \ne 0\) và \(x \ne 2,\) ta có \[M = \frac{{{x^2} + x - 2}}{{{x^2}}} = 1 + \frac{1}{x} - \frac{2}{{{x^2}}}.\]

Đặt \[\frac{1}{x} = t\,\,\,\left( {t \ne 0;\,\,t \ne \frac{1}{2}} \right),\] khi đó:

\[M = 1 + t - 2{t^2} =  - 2\left( {{t^2} - \frac{1}{2}t - \frac{1}{2}} \right) =  - 2\left( {{t^2} - 2 \cdot t \cdot \frac{1}{4} + \frac{1}{{16}} - \frac{1}{2} - \frac{1}{{16}}} \right)\]

\[ =  - 2\left[ {{{\left( {t - \frac{1}{4}} \right)}^2} - \frac{9}{{16}}} \right] = \frac{9}{8} - 2{\left( {t - \frac{1}{4}} \right)^2}.\]

Vì \[{\left( {t - \frac{1}{4}} \right)^2} \ge 0\] nên  \[ - 2{\left( {t - \frac{1}{4}} \right)^2} \le 0,\] do đó \[P \le \frac{9}{8}.\]

Dấu đẳng thức xảy ra khi \[t - \frac{1}{4} = 0,\] tức là \[t = \frac{1}{4}\] (thoả mãn).

Với \(t = \frac{1}{4},\) ta có \[\frac{1}{x} = \frac{1}{4},\] suy ra \[x = 4.\]

Vậy giá trị lớn nhất của \[M\] là \[\frac{9}{8}\] khi \[x = 4.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\frac{x}{0}.\)  
B. \(\frac{{x + y}}{{\frac{1}{y}}}.\)
C. \(\frac{{{x^2} + y}}{{\frac{1}{2}y}}.\)  
D. \(\frac{1}{{\frac{{{x^2} - {y^2}}}{{xy}}}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{ - 1}}{{3x{y^2}}}.\) 
B. \(\frac{{ - 1}}{{3{x^2}y}}.\) 
C. \(\frac{{ - 0}}{{{x^2}y}}.\) 
D. \(\frac{{ - 1}}{{2{x^2}y}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP