Câu hỏi:

23/01/2026 8 Lưu

1) Cho \(\Delta ABC\) có \(AD\) là trung tuyến, trọng tâm \(G,\) đường thẳng đi qua \(G\) cắt các cạnh \(AB,\,\,AC\) lần lượt tại \(E,\,\,F.\) Từ \(B,\,\,C\) kẻ các đường song song với \(EF\) cắt \(AD\) lần lượt tại \(M,\,\,N.\) Chứng minh rằng:

a) \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\)          b) \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = 1.\)          c) \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)

2) Lúc 6 giờ sáng, bạn Hải đi xe đạp từ điểm \[A\] đến trường (tại điểm \(B)\) phải leo lên và xuống một con dốc với đỉnh dốc tại điểm \[C\] (như hình vẽ).

1) Cho tam giác ABC có AD là trung tuyến, trọng tâm G, đường thẳng đi qua G cắt các cạnh AB, AC lần lượt tại E,F. Từ B, C kẻ các đường song song với EF cắt AD lần lượt tại M. N. a) BE/AE = MG/AG. (ảnh 1)

Điểm \(H\) là một điểm thuộc đoạn thẳng \[AB\] sao cho \[CH\] đường là phân giác \(\widehat {ACB},\) \[AH = 0,32{\rm{\;km}}\] và \[BH = 0,4{\rm{\;km}}.\] Biết bạn Hải đi xe đạp đến \[C\] lúc 6 giờ 30 phút với tốc độ trung bình lên dốc là 4 km/h. Hỏi bạn Hải đến trường lúc mấy giờ nếu tốc độ trung bình xuống dốc là 10 km/h?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

1)
1) Cho tam giác ABC có AD là trung tuyến, trọng tâm G, đường thẳng đi qua G cắt các cạnh AB, AC lần lượt tại E,F. Từ B, C kẻ các đường song song với EF cắt AD lần lượt tại M. N. a) BE/AE = MG/AG. (ảnh 2)

a) Xét \(\Delta ABM\) có \(EG\,{\rm{//}}\,BM,\) theo định lí Thalès ta có: \(\frac{{BE}}{{AE}} = \frac{{MG}}{{AG}}.\)

b) Xét \(\Delta DCN\) có \(BM\,{\rm{//}}\,CN,\) theo định lí Thalès ta có: \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}}.\)

Mà \(D\) là trung điểm của \(BC\) (do \(AD\) là trung tuyến của tam giác) nên \(DC = DB.\)

Do đó \(\frac{{DN}}{{MD}} = \frac{{DC}}{{DB}} = 1,\) nên \(DM = DN.\)

Suy ra \(GM + GN = GM + GM + MN = 2GM + 2MD = 2GD.\)

Lại có \(G\) là trọng tâm \(\Delta ABC\) nên \(AG = 2GD.\)

Xét \(\Delta ACN\) có \(FG\,{\rm{//}}\,CN,\) theo định lí Thalès ta có: \(\frac{{CF}}{{AF}} = \frac{{GN}}{{AG}}.\)

Suy ra \(\frac{{BE}}{{AE}} + \frac{{CF}}{{AF}} = \frac{{MG}}{{AG}} + \frac{{GN}}{{AG}} = \frac{{GM + GN}}{{AG}} = \frac{{2GD}}{{2GD}} = 1.\)

c) Xét \(\Delta ABM\) có \(EG\,{\rm{//}}\,BM,\) theo định lí Thalès ta có: \(\frac{{AB}}{{AE}} = \frac{{AM}}{{AG}}.\)

Xét \(\Delta ACN\) có \[FG\,{\rm{//}}\,CN,\] theo định lí Thalès ta có: \(\frac{{AC}}{{AF}} = \frac{{AN}}{{AG}}.\)

Suy ra \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = \frac{{AM}}{{AG}} + \frac{{AN}}{{AG}}\)\( = \frac{{AG + GM + AG + GM + MN}}{{AG}}\)

\( = \frac{{2AG + 2GM + 2MD}}{{AG}}\)\( = \frac{{2AG + 2\left( {GM + MD} \right)}}{{AG}} = \frac{{2AG + 2GD}}{{AG}}\)

\( = \frac{{2AG + 2 \cdot \frac{1}{2}AG}}{{AG}} = \frac{{3AG}}{{AG}} = 3.\)

Vậy \(\frac{{AB}}{{AE}} + \frac{{AC}}{{AF}} = 3.\)

2)

1) Cho tam giác ABC có AD là trung tuyến, trọng tâm G, đường thẳng đi qua G cắt các cạnh AB, AC lần lượt tại E,F. Từ B, C kẻ các đường song song với EF cắt AD lần lượt tại M. N. a) BE/AE = MG/AG. (ảnh 3)

Thời gian để bạn Hải đi từ \[A\] đến \[C\] là: \[6\] giờ \[30\] phút \( - \,\,6\) giờ \[ = 30\] phút \[ = 0,5\] giờ.

Quãng đường mà bạn Hải đi từ \[A\] đến \[C\] trong \(0,5\) giờ với tốc độ trung bình lên dốc 4 km/h là: \[AC = {S_{A \to C}} = 4 \cdot 0,5 = 2\] (km).

Xét \(\Delta ACB\) có \[CH\] là đường phân giác của \(\widehat {ACB},\) nên ta có: \(\frac{{HA}}{{HB}} = \frac{{CA}}{{CB}}\) hay \(\frac{{0,32}}{{0,4}} = \frac{2}{{CB}}\)  Suy ra \(CB = \frac{{0,4 \cdot 2}}{{0,32}} = 2,5\) (km).

Thời gian để bạn Hải đi hết quãng đường \(2,5\) km với tốc độ trung bình xuống dốc 10 km/h là: \(\frac{{2,5}}{{10}} = 0,25\) (giờ).

Như vậy, tổng thời gian bạn Hải đi từ \[A\] đến trường \[B\] là

\[0,5 + 0,25 = 0,75\] (giờ) \[ = 45\] (phút).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

a) Do đường thẳng \[{d_1}\] đi qua điểm \(A\left( {1;1} \right)\) nên thay \[x = 1,{\rm{ }}y = 1\] vào hàm số \[y = mx - 2m - 2\] ta có:

\[1 = m \cdot 1 - 2m - 2\]

Do đó \[1 = m--2m--2\]

Suy ra \[m = --3.\]

Vậy với \[m =  - 3\] thì đường thẳng \({d_1}\) đi qua điểm \(A\left( {1;1} \right).\)

b) Với \[m =  - 3\], ta có đường thẳng \[{d_1}:{\rm{ }}y =  - 3x + 4.\]

Suy ra hệ số góc của đường thẳng \[{d_1}\] là \[a = --3 < 0.\] Vậy góc \(\alpha \) là góc tù.

c) Để \({d_1}\) và \({d_2}\) cắt nhau thì \[m \ne 3 - 2m\] hay \[3m \ne 3\], suy ra \[m \ne 1.\]

Vậy với \(m \ne 0,m \ne \frac{3}{2},m \ne 1\) thì \({d_1}\) và \({d_2}\) cắt nhau.

Câu 2

A. \(\left( {2;0} \right).\)
B. \(\left( {0; - 6} \right).\) 
C. \(\left( { - 6;0} \right).\)  
D. \(\left( {0;2} \right).\)

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Hoành độ giao điểm của đồ thị hàm số bậc nhất \(y = 3x - 6\) với trục \(Oy\) là 0.

Do đó ta có \(y = 3 \cdot 0 - 6 =  - 6\)

Vậy tọa độ giao điểm của đồ thị hàm số bậc nhất \(y = 3x - 6\) với trục \(Ox\) là \(\left( {0; - 6} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. cắt nhau.  
B. song song với nhau.
C. trùng nhau. 
D. Cả A, B, C đều sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\frac{{BD}}{{AD}} = \frac{{BE}}{{BC}}.\)   
B. \(\frac{{BD}}{{AD}} = \frac{{BE}}{{EC}}.\)

C. \(\frac{{DE}}{{AC}} = \frac{{BC}}{{BE}}.\)    

D. \(\frac{{AD}}{{AB}} = \frac{{BC}}{{EC}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP