Từ một tấm tôn hình chữ nhật kích thước \(50\,{\rm{cm}}\)x\(240\,{\rm{cm}}\), người ta làm các thùng đựng nước hình trụ có chiều cao bằng \[50\,{\rm{cm}}\], theo hai cách sau (xem hình minh họa dưới đây):
• Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.
• Cách 2: Cắt tấm tôn ban đầu thành hai tấm bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.
Kí hiệu \({V_1}\) là thể tích của thùng gò được theo cách 1 và \({V_2}\) là tổng thể tích của hai thùng gò được theo cách 2. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).

Từ một tấm tôn hình chữ nhật kích thước \(50\,{\rm{cm}}\)x\(240\,{\rm{cm}}\), người ta làm các thùng đựng nước hình trụ có chiều cao bằng \[50\,{\rm{cm}}\], theo hai cách sau (xem hình minh họa dưới đây):
• Cách 1: Gò tấm tôn ban đầu thành mặt xung quanh của thùng.
• Cách 2: Cắt tấm tôn ban đầu thành hai tấm bằng nhau, rồi gò mỗi tấm đó thành mặt xung quanh của một thùng.
Kí hiệu \({V_1}\) là thể tích của thùng gò được theo cách 1 và \({V_2}\) là tổng thể tích của hai thùng gò được theo cách 2. Tính tỉ số \(\frac{{{V_1}}}{{{V_2}}}\).

Quảng cáo
Trả lời:
Ở cách 1, thùng hình trụ có chiều cao \[h = 50\,{\rm{cm}}\], chu vi đáy \({C_1} = 240\,{\rm{cm}}\) nên bán kính đáy \({R_1} = \frac{{{C_1}}}{{2\pi }} = \frac{{120}}{\pi }\,\,{\rm{cm}}\). Do đó thể tích của thùng là \({V_1} = \pi R_1^2h\).
Ở cách 2, hai thùng đều có có chiều cao \[h = 50\,{\rm{cm}}\], chu vi đáy \({C_2} = 120\,{\rm{cm}}\) nên bán kính đáy \({R_1} = \frac{{{C_2}}}{{2\pi }} = \frac{{60}}{\pi }\,\,{\rm{cm}}\). Do đó tổng thể tích của hai thùng là \({V_2} = 2\pi R_2^2h\).
Vậy \(\frac{{{V_1}}}{{{V_2}}} = \frac{{\pi R_1^2h}}{{2\pi R_2^2h}} = \frac{1}{2}.{\left( {\frac{{{R_1}}}{{{R_2}}}} \right)^2} = \frac{1}{2}.{\left( {\frac{{\frac{{120}}{\pi }}}{{\frac{{60}}{\pi }}}} \right)^2} = 2\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Quay hình chữ nhật \(ABCD\) quanh trục \(HK\) ta được hình trụ có đường cao là \(h = AB = a\), bán kính đường tròn đáy là \(R = BK = \frac{1}{2}BC = a\).
a) Vậy diện tích toàn phần của hình trụ là: \({S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi {a^2}\) (đvdt)
b) Thể tích khối tròn xoay \(\left( T \right)\) là: \(V = \pi {a^2}.a\)\( = \pi {a^3}\)(đvtt)
Lời giải
Thể tích của hai khối trụ làm đầu tạ \(\left( {{T_1}} \right)\): \[{V_1} = 2\pi {r_1}^2{h_1} = 2\pi {\left( {4{r_2}} \right)^2}\frac{1}{2}{h_2} = 16\pi {r_2}^2{h_2} = 16.30 = 480\,\left( {c{m^3}} \right)\].
Tổng thể tích của chiếc tạ tay: \[V = {V_1} + {V_2} = 480\, + 30 = 510\,\left( {c{m^3}} \right)\].
Khối lượng của chiếc tạ: \(m = D.V = 7,7.510 = 3927\left( g \right) = 3,927\left( {kg} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



