Câu hỏi:

04/02/2026 3 Lưu

Cho hai biểu thức:

\(A = \frac{2}{{5.7}} + \frac{5}{{7.12}} + \frac{7}{{12.19}} + \frac{9}{{19.28}} + \frac{{11}}{{28.39}} + \frac{1}{{39.40}}\) và \[B = \frac{1}{{20}} + \frac{1}{{44}} + \frac{1}{{77}} + \frac{1}{{119}} + \frac{1}{{170}}\].

Chứng minh \(A > B\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(A = \frac{2}{{5.7}} + \frac{5}{{7.12}} + \frac{7}{{12.19}} + \frac{9}{{19.28}} + \frac{{11}}{{28.39}} + \frac{1}{{39.40}}\)

\( = \frac{1}{5} - \frac{1}{7} + \frac{1}{7} - \frac{1}{{12}} + \frac{1}{{12}} - \frac{1}{{19}} + \frac{1}{{19}} - \frac{1}{{28}} + \frac{1}{{28}} - \frac{1}{{39}} + \frac{1}{{39}} - \frac{1}{{40}}\)

\( = \frac{1}{5} - \frac{1}{{40}}\)\( = \frac{8}{{40}} - \frac{1}{{40}} = \frac{7}{{40}}\);

\[B = \frac{1}{{20}} + \frac{1}{{44}} + \frac{1}{{77}} + \frac{1}{{119}} + \frac{1}{{170}}\]

\[ = \frac{2}{{40}} + \frac{2}{{88}} + \frac{2}{{154}} + \frac{2}{{238}} + \frac{2}{{340}}\]

\[ = 2.\left( {\frac{1}{{5.8}} + \frac{1}{{8.11}} + \frac{1}{{11.14}} + \frac{1}{{14.17}} + \frac{1}{{17.20}}} \right)\]

\[ = 2.\frac{1}{3}.\left( {\frac{3}{{5.8}} + \frac{3}{{8.11}} + \frac{3}{{11.14}} + \frac{3}{{14.17}} + \frac{3}{{17.20}}} \right)\]

\[ = \frac{2}{3}.\left( {\frac{1}{5} - \frac{1}{8} + \frac{1}{8} - \frac{1}{{11}} + \frac{1}{{11}} - \frac{1}{{14}} + \frac{1}{{14}} - \frac{1}{{17}} + \frac{1}{{17}} - \frac{1}{{20}}} \right)\]

\[ = \frac{2}{3}.\left( {\frac{1}{5} - \frac{1}{{20}}} \right)\]\[ = \frac{2}{3}.\left( {\frac{4}{{20}} - \frac{1}{{20}}} \right)\]\[ = \frac{2}{3}.\frac{3}{{20}}\]\[ = \frac{1}{{10}}\].

Ta có: \(\frac{7}{{40}} > \frac{4}{{40}} = \frac{1}{{10}}\).

Do đó \(A > B\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trên tia Ax, vẽ hai điểm M,N sao cho AM = 6 cm, AN = 12 cm. a) Tính độ dài đoạn thẳng MN. b) So sánh độ dài của hai đoạn thẳng AM và MN (ảnh 1)

a) Trên tia \[Ax\] có \[AM < AN\] (6 cm < 12 cm).

Suy ra điểm \[M\] nằm giữa hai điểm \[A\] và \[N.\] 

Khi đó \[AM + MN = AN\].

Thay \[AM = 6\] cm, \[AN = 12\] cm, ta có: \[6 + MN = 12\].

Suy ra \[MN = 12--6 = 6\] (cm).

Vậy \[MN = 6\] cm.

b) Ta có \[AM = 6\] cm (theo đề bài); \[MN = 6\] cm (theo câu a).

 Do đó \[AM = MN\,\,( = 6\] cm).

Lời giải

Đáp án đúng là: B

Phân số \(\frac{2}{4}\) không bằng phân số \(\frac{{ - 1}}{2}\) vì \(2\,\,.\,\,2 \ne ( - 1)\,\,.\,\,4\).

Câu 3

A. \(\frac{{ - 11}}{6}\); 
B. \(\frac{6}{{11}}\); 
C. \(\frac{{ - 7}}{{11}}\); 
D. \(\frac{{ - 6}}{{11}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Chữ A là hình vừa có trục đối xứng, vừa có tâm đối xứng;
B. Chữ N là hình có tâm đối xứng và không có trục đối xứng;
C. Chữ O là hình vừa có trục đối xứng, vừa có tâm đối xứng;
D. Chữ M là hình có trục đối xứng và không có tâm đối xứng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[C \notin a\];  
B. \[C \in a\]; 
C. \[A \notin a\]; 
D. \[B \in a\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP