Câu hỏi:

13/07/2024 1,604

Cho hai đường tròn (O; R) và (O'; r) cắt nhau tại A và B (R > r). Gọi I là trung điểm của OO'. Kẻ đường thẳng vuông góc với IA tại A, đường thẳng này cắt các đường tròn (O; R) và (O'; r) theo thứ tự C và D (khác A).

Chứng minh rằng AC = AD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để học tốt Toán 9 | Giải bài tập Toán 9Kẻ OM ⊥ AD.

Theo tính chất đường kính vuông góc với một dây, ta có: MA = MC

Tương tự, kẻ O'N ⊥ AD => NA = ND.

Ta có:


Vậy tứ giác OMNO' là hình thang vuông.

Ta còn có: IO = IO' (gt) và IA // OM

Do đó IA là đường trung bình của hình thang OMNO'.

=> AM = AN hay 2AM = 2AN

Hay AC = CD (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

- Tiếp tuyến với đường tròn là đường thẳng chỉ có một điểm chung với đường tròn.

- Tiếp tuyến với đường tròn thì vuông góc với bán kính đi qua tiếp điểm.

- Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua tiếp điểm ấy thì đường thẳng ấy là một tiếp tuyến của đường tròn.

- Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì:

   a) Điểm đó cách đều hai tiếp điểm.

   b) Tia kẻ từ điểm đó đi qua tâm là tia phân giác của góc tạo bởi hai tiếp tuyến.

   c) Tia kẻ từ tâm qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua tiếp điểm.

Lời giải

Gọi G là giao điểm của AH và EF

Tứ giác AEHF là hình chữ nhật => AH = EF

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó EF là tiếp tuyến của đường tròn (I)

Tương tự, EF là tiếp tuyến của đường tròn (K)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay