Câu hỏi:
11/07/2024 14,831Cho hai điểm A(3; -4) và B(-3; 4).
Viết phương trình đường tròn (C) nhận AB là đường kính.
Quảng cáo
Trả lời:
Gọi I là tâm đường tròn nhận AB là đường kính
⇒ I là trung điểm của AB ⇒ I (0; 0)
⇒ R = AB/2 = 5
Phương trình đường tròn (C) nhận AB là đường kính là:
x2 + y2 = 25
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi đường tròn cần tìm là (C) có tâm I(a ; b) và bán kính bằng R.
(C) tiếp xúc với Ox ⇒ R = d(I ; Ox) = |b|
(C) tiếp xúc với Oy ⇒ R = d(I ; Oy) = |a|
⇒ |a| = |b|
⇒ a = b hoặc a = –b.
+ TH1: Xét a = b thì I(a; a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 – a)2 = a2
⇔ 4- 4a + a2 + 1 – 2a + a2 = a2
⇔ 2a2 – 6a + 5- a2 =0
⇔ a2 – 6a + 5 = 0
⇔ a = 1 hoặc a = 5.
* a = 1 ⇒ I(1; 1) và R = 1.
Ta có phương trình đường tròn (C): (x – 1)2 + (y – 1)2 = 1.
* a = 5 ⇒ I(5; 5), R = 5.
Ta có phương trình đường tròn (C) : (x – 5)2 + (y – 5)2 = 25.
+ TH2: Xét a = –b thì I(a; –a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 + a)2 = a2
⇔ 4 – 4a + a2 + 1+ 2a + a2 - a2 = 0
⇔ a2 – 2a + 5 = 0 (Phương trình vô nghiệm)
Vậy có hai đường tròn thỏa mãn là: (C): (x – 1)2 + (y – 1)2 = 1 hoặc (C) : (x – 5)2 + (y – 5)2 = 25.
Lời giải
Gọi phương trình đường tròn (C) là: x2 + y2 – 2ax – 2by + c = 0.
a) Do A(1; 2) ∈ (C) ⇔ 12 + 22 – 2.a.1 – 2.b.2 + c = 0
⇔ 5 – 2a – 4b + c = 0 ⇔ 2a + 4b – c = 5 (1)
Do B(5; 2) ∈ (C) ⇔ 52 + 22 – 2.a.5 – 2.b.2+ c = 0
⇔ 29 – 10a – 4b + c = 0 ⇔ 10a + 4b – c = 29 (2)
Do C(1; –3) ∈ (C) ⇔ 12 + (–3)2 – 2.a.1 – 2.b.(–3) + c = 0
⇔ 10 – 2a + 6b + c = 0 ⇔ 2a – 6b – c = 10 (3)
Từ (1), (2) và (3) ta có hệ phương trình :
Giải hệ phương trình trên ta được nghiệm a = 3, b = –1/2, c = –1.
Vậy đường tròn đi qua ba điểm A, B, C là : x2 + y2 – 6x + y – 1 = 0.
b)
M(–2 ; 4) ∈ (C) ⇔ (–2)2 + 42 – 2.a.(–2) – 2.b.4 + c = 0 ⇔ 4a – 8b + c = –20 (1)
N(5; 5) ∈ (C) ⇔ 52 + 52 – 2.a.5 – 2.b.5 + c = 0 ⇔ 10a + 10b – c = 50 (2)
P(6; –2) ∈ (C) ⇔ 62 + (–2)2 – 2.a.6 – 2.b.(–2) + c = 0 ⇔ 12a – 4b – c = 40 (3)
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ phương trình trên ta được nghiệm a = 2, b = 1, c = –20.
Vậy đường tròn đi qua ba điểm M, N, P là : x2 + y2 – 4x – 2y – 20 = 0.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.