Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại A và B. Vẽ đường thẳng qua A cắt (O) tại M và cắt (O') tại N (A nằm giữa M và N). Hỏi MBN là tam giác gì? Tại sao?
Câu hỏi trong đề: Giải Toán 9 phần Hình học Tập 2 !!
Quảng cáo
Trả lời:
+ (O) và (O’) là hai đường tròn bằng nhau
cùng được căng bởi dây AB
+ (O) có là góc nội tiếp chắn cung
+ (O’) có là góc nội tiếp chắn cung
Từ (1); (2); và (3) suy ra
⇒ ΔBMN cân tại B.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi (O; R) là đường tròn chứa cung AMB.
Kẻ đường kính MC.
K là trung điểm AB ⇒ BK = = 20 (m).
là góc nội tiếp chắn nửa đường tròn
⇒ = 90º
⇒ ΔMBC vuông tại B, có BK là đường cao
⇒ BK2 = MK.KC ( hệ thức về cạnh và đường cao trong tam giác vuông)
Lời giải
là góc nội tiếp chắn nửa đường tròn ⇒
⇒ AN ⊥ NB
là góc nội tiếp chắn nửa đường tròn ⇒
⇒ AM ⊥ MB
ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.
⇒ A là trực tâm của ΔSHB.
⇒ AB ⊥ SH (đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.