Cho hai đường tròn bằng nhau (O) và (O') cắt nhau tại A và B. Vẽ đường thẳng qua A cắt (O) tại M và cắt (O') tại N (A nằm giữa M và N). Hỏi MBN là tam giác gì? Tại sao?
Câu hỏi trong đề: Giải Toán 9 phần Hình học Tập 2 !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    + (O) và (O’) là hai đường tròn bằng nhau
 cùng được căng bởi dây AB
+ (O) có  là góc nội tiếp chắn cung 
+ (O’) có  là góc nội tiếp chắn cung 
Từ (1); (2); và (3) suy ra 
⇒ ΔBMN cân tại B.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi (O; R) là đường tròn chứa cung AMB.
Kẻ đường kính MC.
K là trung điểm AB ⇒ BK =  = 20 (m).
 là góc nội tiếp chắn nửa đường tròn
⇒  = 90º
⇒ ΔMBC vuông tại B, có BK là đường cao
⇒ BK2 = MK.KC ( hệ thức về cạnh và đường cao trong tam giác vuông)
Lời giải
 là góc nội tiếp chắn nửa đường tròn ⇒ 
 ⇒ AN ⊥ NB
 là góc nội tiếp chắn nửa đường tròn ⇒ 
 ⇒ AM ⊥ MB
ΔSHB có: SM ⊥ HB, NH ⊥ SB và SM; HN cắt nhau tại A.
⇒ A là trực tâm của ΔSHB.
⇒ AB ⊥ SH (đpcm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
 Nhắn tin Zalo
 Nhắn tin Zalo