Câu hỏi:

13/07/2024 2,224

Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 63 trang 92 SGK Toán 9 Tập 2 | Giải toán lớp 9

* Vẽ lục giác đều nội tiếp (O; R) :

+ Lấy điểm A trên (O ; R).

+ Vẽ cung tròn (A; R) cắt (O; R) tại B và F => AB = AF = R

+ Vẽ cung tròn (B; R) cắt (O; R) tại C ( khác A) => BC = R

+ Vẽ cung tròn (C; R) cắt (O; R) tại D ( khác B) => CD = R

+ Vẽ cung tròn (D; R) cắt (O; R) tại E ( khác C)=> DE = R

ABCDEF là lục giác đều cần vẽ.

* Tính cạnh: AB = BC = CD = DE = EF = FA = R.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ OH ⊥ BC.

⇒ OH là khoảng cách từ từ tâm O đến BC

Vì AB = BC = CD = DA ( ABCD là hình vuông) nên khoảng cách từ tâm O đến AB, BC, CD, DA bằng nhau ( định lý lien hệ giữa dây cung và khoảng cách từ tâm đến dây)

⇒ O là tâm đường tròn nội tiếp hình vuông ABCD

OH là bán kính r của đường tròn nội tiếp hình vuông ABCD.

Tam giác vuông OBC có OH là đường trung tuyến ⇒ Giải bài tập Toán 9 | Giải Toán lớp 9

Xét tam giác vuông OHB có: r2 + r2 = OB2 = 22 ⇒ 2r2 = 4 ⇒ r2 = 2 ⇒ r = √2(cm)

Vẽ đường tròn (O; OH). Đường tròn này nội tiếp hình vuông, tiếp xúc bốn cạnh hình vuông tại các trung điểm của mỗi cạnh.

 

Lời giải

Giải bài 61 trang 91 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vẽ đường kính AC và BD vuông góc với nhau. Nối A với B, B với C, C với D, D với A ta được tứ giác ABCD là hình vuông nội tiếp đường tròn (O; 2cm).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP