Câu hỏi:

13/07/2024 1,837

Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.

Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP (tính chất của hai tiếp tuyến cắt nhau).

Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.

Vậy ΔMON vuông tại O.

Góc Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc nội tiếp chắn nửa đường tròn nên Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 = 900

Tứ giác AOPM có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Suy ra, tứ giác AOPM nội tiếp đường tròn.

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

Xét ∆ MON và ∆ APB có:

Giải bài 37 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9

=> Hai tam giác MON và APB đồng dạng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thể tích cần tính gồm một hình trụ và hai nửa hình cầu.

- Hình cầu có đường kính d = 1,8m ⇒ bán kính R = 0,9m

- Hình trụ có bán kính đáy bằng bán kính hình cầu R = 0,9m; chiều cao h = 3,62m.

Thể tích hình trụ: V1 = π.R2.h ≈ 9,21 (m3).

Thể tích hai nửa hình cầu: Giải bài 35 trang 126 SGK Toán 9 Tập 2 | Giải toán lớp 9 (m3).

Thể tích bồn chứa xăng: V = V1 + V2 ≈ 12,26(m3).

Lời giải

* Tam giác MON vuông tại O có đường cao OP nên

OP2 = MP. NP (1)

* Theo tính chất hai tiếp tuyến cắt nhau ta có

MA= MP và NB = NP (2)

Từ (1) và (2) suy ra: OP2 = MA. NB hay R2 = MA. NB ( đpcm)