Câu hỏi:

14/04/2020 2,421

Tìm số tự nhiên abc có ba chữ số khác nhau, chia hết cho các số nguyên tố a, b, c.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Do a, b, c là các số nguyên tố nên a, b, c ∈ {2;3;5;7}.

Nếu trong ba số a, b, c có cả 2 và 5 thì abc ⋮ 10 nên c = 0 loại

Vậy a, b, c ∈ {2;3;7} hoặc {3;5;7}

Trường hợp a, b, c ∈ {2;3;7} ta có: abc ⋮ 2 nên c = 2

Xét các số 372 và 732, chúng đều không chia hết cho 7.

Trường hợp a, b, c ∈ {3;5;7}: Vì a + b + c = 12 nên abc ⋮ 3. Để abc ⋮ 5, ta chọn c = 5.

Xét các số 375 và 735, chỉ có 735 ⋮ 7.

Vậy số phải tìm là 735.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) 5* ⋮ 2 : để 5* là hợp số ta có thể thay dấu * bởi các chữ số 0;2;4;6;8 thì được số chia hết cho 2.

+) 5* ⋮ 3 : để 5* là hợp số ta có thể thay dấu * bởi các chữ số 1;4;7 thì được số chia hết cho 3

+) 5* ⋮ 5 : để 5* là hợp số ta có thể thay dấu * bởi các chữ số 0;5 thì được số chia hết cho 5

Vậy thay dấu * bởi các chữ số 0;1;2;4;5;6;7;8 thì được 5* là hợp số.

Lời giải

Các số lẻ khác 2003, 2011 và 2017 trong khoảng từ 2000 đến 2020 đều là hợp số vì:

2001 có 2 + 0 + 0 + 1 = 3 ⋮ 3 nên 2001 ⋮ 3. Suy ra 2001 là hợp số

2005 có chữ số tận cùng là 5 nên 2005 ⋮ 5. Suy ra 2005 là hợp số

2007 có 2 + 0 + 0 + 7 = 9 ⋮ 3 nên 2007 ⋮ 3. Suy ra 2007 là hợp số

Vì 2009 = 41.49 nên 2009 ⋮ 41. Suy ra 2009 là hợp số

Vì 2013 = 11.183 nên 2013 ⋮ 11. Suy ra 2013 là hợp số

2015 có chữ số tận cùng bằng 5 nên 2015 ⋮ 5. Suy ra 2015 là hợp số

2019 có 2 + 0 + 1 + 9 = 12 ⋮ 3 nên 2019 ⋮ 3. Suy ra 2019 là hợp số

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay