Câu hỏi:
14/04/2020 1,657Tìm số tự nhiên abc có ba chữ số khác nhau, chia hết cho các số nguyên tố a, b, c.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do a, b, c là các số nguyên tố nên a, b, c ∈ {2;3;5;7}.
Nếu trong ba số a, b, c có cả 2 và 5 thì abc ⋮ 10 nên c = 0 loại
Vậy a, b, c ∈ {2;3;7} hoặc {3;5;7}
Trường hợp a, b, c ∈ {2;3;7} ta có: abc ⋮ 2 nên c = 2
Xét các số 372 và 732, chúng đều không chia hết cho 7.
Trường hợp a, b, c ∈ {3;5;7}: Vì a + b + c = 12 nên abc ⋮ 3. Để abc ⋮ 5, ta chọn c = 5.
Xét các số 375 và 735, chỉ có 735 ⋮ 7.
Vậy số phải tìm là 735.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Từ 2000 đến 2020 chỉ có ba số nguyên tố là 2003, 2011, 2017. Hãy giải thích tại sao các số lẻ khác trong khoảng từ 2000 đến 2020 đều là hợp số?
về câu hỏi!