Câu hỏi:

01/05/2020 9,110

Cho tam giác ABC. Dựng về phía ngoài của tam giác các hình vuông BCIJ, ACMN, ABEF và gọi O, P, Q lần lượt là tâm đối xứng của chúng

a) Gọi D là trung điểm của AB. Chứng minh rằng DOP là tam giác vuông cân đỉnh D

b) Chứng minh AO vuông góc với PQ và AO = PQ

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Phép quay tâm C góc 90ο biến MB thành AI. Do đó MB bằng và vuông góc với AI. DP song song và bằng nửa BM, DO song song và bằng nửa AI. Từ đó suy ra DP bằng và vuông góc với DO.

b) Từ câu a) suy ra phép quay tâm D, góc 90ο biến O thành P, biến A thành Q. Do đó OA bằng và vuông góc với PQ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng Oxy cho các điểm A(3; 3), B(0; 5), C(1; 1) và đường thẳng d có phương trình 5x − 3y + 15 = 0. Hãy xác định tọa độ các đỉnh của tam giác A’B’C’ và phương trình của đường thẳng d theo thứ tự là ảnh của tam giác ABC và đường thẳng d qua phép quay tâm O, góc quay 90ο

Xem đáp án » 13/07/2024 6,506

Câu 2:

Cho lục giác đều ABCDEF, O là tâm đối xứng của nó, I là trung điểm của AB

a) Tìm ảnh của tam giác AIF qua phép quay tâm O góc 120ο

b) Tìm ảnh của tam giác AOF qua phép quay tâm E góc 60ο

Xem đáp án » 13/07/2024 6,432

Câu 3:

Cho nửa đường tròn tâm O đường kính BC. Điểm A chạy trên nửa đường tròn đó. Dựng về phía ngoài của tam giác ABC hình vuông ABEF. Chứng minh rằng E chạy trên một nửa đường tròn cố định.

Xem đáp án » 13/07/2024 2,441

Bình luận


Bình luận