Cho tứ giác ABCD có α là góc nhọn tạo bởi hai đường chéo chứng minh rằng = 1/2.AC.BD.sin.
Câu hỏi trong đề: Giải Sách Bài Tập Toán 9 Tập 1 !!
Quảng cáo
Trả lời:
Giả sử hai đường chéo AC, BD cắt nhau tại I, (AIB) = là góc nhọn (xem h.bs.9)
Kẻ đường cao AH của tam giác ABD và đường cao CK của tam giác CBD.
Ta có: AH = AI.sin, CK = CI.sin
Diện tích tam giác ABD là = 1/2 BD.AH.
Diện tích tam giác CBD là = 1/2 BD.CK.
Từ đó diện tích S của tứ giác ABCD là:
S = = 1/2BD.(AH + CK)
= 1/2 BD.(AI + CI)sin = 1/2BD.AC.sin
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta có:
= 100
Suy ra: BC = 10 (cm)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.