Câu hỏi:

04/05/2020 1,691 Lưu

Cho tam giác ABC. Gọi (α) là mặt phẳng vuông góc với đường thẳng CA tại A và (β) là mặt phẳng vuông góc với đường thẳng CB tại B. Chứng minh rằng hai mặt phẳng (α) và (β) cắt nhau và giao tuyến d của chúng vuông góc với mặt phẳng (ABC).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hai mặt phẳng (α) và (β) không thể trùng nhau vì nếu chúng trùng nhau thì từ một điểm C ta dựng được hai đường thẳng CA, CB cùng vuông góc với một mặt phẳng, điều đó là vô lí.

Mặt khác (α) và (β) cũng không song song với nhau.

Vì nếu (α) // (β), thì từ CB ⊥ (β) ta suy ra CB ⊥ (α)

Như vậy từ một điểm C ta dựng được hai đường thẳng CA, CB cùng vuông góc với (α), điều đó là vô lí.

Vậy (α) và (β) là hai mặt phẳng không trùng nhau, không song song với nhau và chúng phải cắt nhau theo giao tuyến d, nghĩa là d = (α) ∩ (β)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra d ⊥ (ABC).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:

BC ⊥ (AID) nên BC ⊥ AD.

b) Vì BC ⊥ (AID) nên BC ⊥ AH

 

Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).

Lời giải

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) BC ⊥ AH và BC ⊥ A'H vì A'H ⊥ (ABC)

⇒ BC ⊥ (A'HA) ⇒ BC ⊥ AA'

Và B'C' ⊥ AA' vì BC // B'C'

b) Ta có AA' // BB' // CC' mà BC ⊥ AA' nên tứ giác BCC’B’ là hình chữ nhật. Vì AA' // (BCC'B') nên ta suy ra MM' ⊥ BC và MM' ⊥ B'C' hay MM’ là đường cao của hình chữ nhật BCC’B’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP