Câu hỏi:
13/07/2024 1,886Các điểm được sắp xếp theo thứ tự đó trên đường tròn (O) và chia đường tròn thành 20 cung bằng nhau.Chứng minh rằng dây vuông góc với dây
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi giao điểm của và là M
Vì đường tròn được chia thành 20 cung
bằng nhau nên số đo của mỗi cung là :
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông ở A.Đường tròn đường kính AB cắt BC ở D .Tiếp tuyến ở D cắt AC ở P.Chứng minh rằng PD = PC
Câu 2:
A, B, C là ba điểm thuộc đường tròn (O) sao cho tiếp tuyến tại A cắt tia BC tại D.Tia phân giác của góc (BAC) cắt đường tròn ở M,tia phân giác của góc D cắt AM ở I. Chứng minh DI ⊥ AM
Câu 3:
Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau AB, BC, CD mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB, CD cắt nhau tại I các tiếp tuyến của đường tròn tại B,D cắt nhau tại K. Chứng minh BIC = BKD
Câu 4:
Hai dây cung AB và CD kéo dài cắt nhau tại điểm E ở ngoài đường tròn (O) (B nằm giữa A và E,C nằm giữa D và E). Cho biết CEB = , CEB = , AOD = .
Chứng minh AOB = BAC
Câu 5:
Cho đường tròn tâm O bán kính R. Lấy 3 điểm A, B, C trên đường tròn đó sao cho AB = BC = CA. Gọi I là điểm bất kỳ của cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI và AB. Gọi N là giao điểm của BI và AC. Chứng minh: AMC = CBI
Câu 6:
Cho đường tròn tâm O bán kính R và dây AB bất kỳ. Gọi M là điểm chính giữa của cung nhỏ AB. E và F là hai điểm bất kỳ trên dây AB. Gọi C và D tương ứng là giao điểm của ME, MF của đường tròn (O). Chứng minh EFD + ECD =
Câu 7:
Cho đường tròn tâm O bán kính R. Lấy 3 điểm A, B, C trên đường tròn đó sao cho AB = BC = CA. Gọi I là điểm bất kỳ của cung nhỏ BC (và I không trùng với B, C). Gọi M là giao điểm của CI và AB. Gọi N là giao điểm của BI và AC. Chứng minh: ANB = BCI
về câu hỏi!