Câu hỏi:

07/05/2020 992 Lưu

Một đám mây thể tích 2,0.1010 m3 chứa hơi nước bão hòa trong khí quyển ở nhiệt độ 20°C. Khi nhiệt độ của đám mây giảm xuống tới 10°C, hơi nước bão hòa trong đám mây tụ lại thành các hạt mưa. Xác định khối lượng nước mưa rơi xuống. Cho biết khối lượng riêng của hơi nước bão hòa trong không khí ở 10°C là 9,40 g/m3 và ở 20°C là 17,30 g/m3

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì độ ẩm cực đại A20 của không khí ở 20°C có giá trị bằng khối lượng riêng của hơi nước bão hoà ở cùng nhiệt độ, nên ta có : A20 = 17,30 g/m3

và suy ra lượng hơi nước cực đại có trong thể tích V = 2,0.1010 m3 của đám mây :

M20 = A20V = 17,30.10-3.2,0.1010 = 3,46.108 kg

Khi nhiệt độ không khí của đám mây giảm xuống tới 10°C thì lượng hơi nước cực đại có trong thể tích V = 2,0.1010 m3 của đám mây chỉ còn bằng :

M10 = A10V = 9,40.10-3.2,0.1010 = l,88.108 kg. Như vậy khối lượng nước mưa rơi xuống bằng :

M = M20 - M10 = 3,46.108- l,88.108 = 1,58.108 kg = 158.103 tấn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lượng nhiệt cần cung cấp để biến đổi m = 6,0 kg nước đá ở nhiệt độ t1 = -20°C biến thành hơi nước ở t2 = 100°C có giá trị bằng :

Q = Q1+Q2+Q3+Q4

trong đó lượng nhiệt Q1 = c1m(t0 - t1) cung cấp cho m (kg) nước đá có nhiệt dung riêng cđ để nhiệt độ của nó tăng từ t1 = -20°C đến t0 = 0°C ; lượng nhiệt Q0 = λm cung cấp cho m (kg) nước đá có nhiệt nóng chảy riêng λ ở t0 = 0°C tan thành nước ở cùng nhiệt độ ; lượng nhiệt Q2= c0m(t2 -t0)

cung cấp cho m (kg) nước có nhiệt dung riêng cn để nhiệt độ của nó tăng từ t0 = 0°C đến t2 = 100°C ; lượng nhiệt Q3 = Lm cung cấp cho m (kg) nước có nhiệt hoá hơi riêng L ở t2 = 100°C biến thành hơi nước ở cùng nhiệt độ. Như vậy, ta có thể viết:

Q = cđm(t0 - t1) + λm + cnm(t2 -t0) + Lm

hay Q = m[cđ(t0 - t1) + λ + cn(t2 -t0) + L]

Thay số, ta tìm được :

Q = 6,0. [2090.(0 + 20) + 3,4.105 + 4180.(100 - 0) + 2,3.106]

Q ≈ 186.106 J.