Câu hỏi:
12/07/2024 568B. Phần tự luận (6 điểm)
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
a. Chứng minh ΔAMB = ΔDMC
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a. Hình vẽ (1 điểm)
Xét ΔABM và ΔBCM có:
BM = MC
∠(AMB) = ∠(BMC)
AM = MD
⇒ ΔABM = ΔBCM (c.g.c) (1 điểm)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
A. Phần trắc nghiệm (4 điểm)
Trong mỗi câu dưới đây, hãy chọn phương án trả lời đúng:
Cho tam giác ABC có độ dài các cạnh Góc lớn nhất của tam giác là:
Câu 3:
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
c. So sánh ∠(BAM) và ∠(MAC)
Câu 4:
Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA
b. Chứng minh AC > CD
Câu 5:
Cho tam giác ABC có độ dài các cạnh So sánh các góc của tam giác ABC.
Câu 6:
Tam giác cân có độ dài hai cạnh là 3cm, 7cm. Khi đó độ dài cạnh còn lại là:
về câu hỏi!