Câu hỏi:

13/07/2024 458

Cho tam giác ABC có hai đường cao AH, BK cắt nhau tại điểm M. Biết

A = 55o, B = 67o

b. Tính (AMB)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

b Trong tam giác vuông ABK có ∠(ABK) + ∠(AKB) + ∠(BAK) = 180o

Nên ∠(ABK) = 180o - 55o - 90o = 35o ( 1 điểm)

Trong tam giác vuông ABH có ∠(BAH) + ∠(ABH) + ∠(BHA) = 180o

Nên ∠(BAH) = 180o - 67o - 90o = 23o ( 1 điểm)

Trong tam giác ABM có ∠(ABM) + ∠(BAM) + ∠(MAB) = 180o nên

∠(AMB) = 180o - 23o - 35o = 122o ( 1 điểm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Ta có AG/AM = 6/9 = 2/3 nên G là trọng tâm tam giác. Chọn A

Lời giải

Vì tam giác ABC đều nên ∠(BAC) = 60o

AM là tia phân giác nên ∠(BAM) = 60o : 2 = 30o. Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP