Câu hỏi:

24/06/2020 850 Lưu

Cho tam giác ABC vuông tại A, tia phân giác của (ABC) cắt AC tại D. Kẻ DE ⊥ BC (E ∈ BC). Gọi F là giao điểm của BA và ED. Chứng minh:

c. DF = DC

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c. Xét ∆ADF và ∆EDC có:

AD = DE

∠(ADF) = ∠(EDC) (hai góc đối đỉnh)

⇒ ∆ADF = ∆EDC ( cạnh góc vuông – góc nhọn kề)(1 điểm)

⇒ DF = DC (hai cạnh tương ứng) (0.5 điểm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có ∠A = 180o - 45o - 75o = 60o. Vì AD là tia phân giác nên

∠(BAD) = 30o

Trong tam giác ADB có ∠(ADB) = 180o - 45o - 30o = 105o. Chọn A

Câu 2

Lời giải

Chọn B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP