Câu hỏi:

13/07/2024 9,161

Chứng minh rằng: Trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có, một số a khi chia cho 3, số dư chỉ có thể là 0, 1, hoặc 2.

Theo nguyên lí Dirichle, trong 5 số tự nhiên bất kì khi chia cho 3, tồn tại ít nhất 2 số có cùng số dư.

Khi đó có các trường hợp sau:

TH1: Trong 5 số có từ 3 số trở lên có cùng số dư.

Gọi 3 dố trong các số đó là x, y, z khi chia cho 3 có cùng số dự thì x+y+z3

TH2: Trong 5 số đó chỉ có 2 số có cùng số dư. Khi đó số dư chỉ có thể xảy ra các trường hợp sau:

0;0;1;1;2;0;1;1;2;2;0;0;1;2;2

Trong cả 3 trường hợp luôn tồn tại 3 số tự nhiên x, y, z khi chia cho 3 có các số dư khác nhau lần lượt là: 1; 2; 0 nên x+y+z3

Vậy trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm các số nguyên dương x, biết: 6x=x24

Xem đáp án » 13/07/2024 3,965

Câu 2:

Tìm tất cả các ước nguyên âm lớn hơn -10 của -30. Tính tích các ước tìm được đó.

Xem đáp án » 13/07/2024 1,244

Câu 3:

Tìm số nguyên x, biết: 32 - (5x-18) = 95

Xem đáp án » 13/07/2024 1,041

Câu 4:

So sánh rồi sắp xếp theo thứ tự giảm dần của các phân số sau: 1990;1327;736

Xem đáp án » 13/07/2024 962

Câu 5:

Thực hiện phép tính: A=125.23+71.53+53.2942.53

Xem đáp án » 13/07/2024 886

Câu 6:

Trên cùng một nửa mặt phẳng có bờ là đường thẳng chứa tia Oy, vẽ hai tia Ox và Om sao cho xOy^=130°,mOy^=40°

1. Trong 3 tia Ox, Oy, Om tia nào nằm giữa hai tia còn lại? Vì sao?

2. Tính số đo xOm^

3. Trong kẻ tia Ot sao cho xOt^=70°. Tính số đo tOy^

Xem đáp án » 13/07/2024 660

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store