Câu hỏi:

12/07/2024 6,904

Phân số 49 bằng các phân số nào trong các phân số sau: 48108;80180;60130;135270 ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta thấy các phân số Phân số 4/9 bằng các phân số nào trong các phân số sau chưa là phân số tối giản, mà phân số Phân số 4/9 bằng các phân số nào trong các phân số sau là phân số tối giản (vì 4 và 9 là hai số nguyên tố cùng nhau) nên ta đi rút gọn các phân số  Phân số 4/9 bằng các phân số nào trong các phân số sau rồi so sánh. 

+ Ta có: 48 = 3 . 16 = 3 . 24; 108 = 4 . 27 = 22 . 3

Các thừa số nguyên tố chung là 2, 3 và số mũ nhỏ nhất của 2 là 2; số mũ nhỏ nhất của 3 là 1.  

Nên ƯCLN(48, 108) = 22 . 3 = 12.

Do đó: Phân số 4/9 bằng các phân số nào trong các phân số sau

+ Ta có: 80 = 8 . 10 = 23 . (2 . 5) = 24 . 5

180 = 10 . 18 = (2 . 5) .(2 . 3 . 3) = 22 . 32 . 5 

Các thừa số nguyên tố chung là 2 và 5; Số 2 có số mũ nhỏ nhất là 2, số 5 có số mũ nhỏ nhất là 1.

Nên ƯCLN(80, 180) = 22 . 5 = 20

Do đó: Phân số 4/9 bằng các phân số nào trong các phân số sau

+ Ta có: 60 = 6 . 10 = (2. 3) . (2 . 5) = 22 . 3 . 5

130 = 10 . 13 = 2 . 5 . 13 

Các thừa số nguyên tố chung là 2 và 5, số 2 và số 5 đều có số mũ nhỏ nhất là 1.

Nên ƯCLN(60, 130) = 2 . 5 = 10 

Do đó: Phân số 4/9 bằng các phân số nào trong các phân số sau.

+ Ta có: 135 = 5 . 27 = 5 . 33; 270 = 10 . 27 = (2 . 5) .33 = 2 . 33 . 5

Các thừa số nguyên tố chung là 3 và 5. Số 3 có số mũ nhỏ nhất là 3 và 5 có số mũ nhỏ nhất là 1.

Nên ƯCLN(135, 270) = 33. 5 = 135 

Do đó: Phân số 4/9 bằng các phân số nào trong các phân số sau

Vậy trong các phân số đã cho, các phân số bằng Phân số 4/9 bằng các phân số nào trong các phân số sau  Phân số 4/9 bằng các phân số nào trong các phân số sau.

 

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử a là số đội chơi được chia. (a ∈ N*)

Vì a là lớn nhất (phải chia nhiều đội nhất) và số bạn nam cũng như số bạn nữ được chia đều vào các đội nên khi đó a là ước chung lớn nhất của 24 và 30. 

Ta có:

24 = 3 . 8 = 3 . 23 ; 30 = 3 . 10 = 3 . 2 . 5  

(Các thừa số chung là 2; 3 và đều có số mũ nhỏ nhất là 1)

Khi đó: ƯCLN(24, 30) = 2 . 3 = 6 hay a = 6. 

Vậy có thể chia các bạn nhiều nhất thành 6 đội.

Lời giải

a) + Ta có: 31 là số nguyên tố nên nó chỉ có hai ước là 1 và 31. 

22 và 34 không chia hết cho 31 

Do đó ta có: ƯCLN(31, 22) = 1 và ƯCLN(31, 34) = 1.

+ Ta còn phải tìm ƯCLN(22, 34), ta phân tích các số 22 và 34 ra thừa số nguyên tố ta được: 22 = 2 . 11; 34 = 2 . 17. 

Khi đó thừa số nguyên tố chung của 22 và 34 là 2 với số mũ nhỏ nhất là 1.

Vậy ƯCLN( 22, 34) = 2. 

b) Ta phân tích các số 105; 128; 135 ra thừa số nguyên tố, ta có: 

Tìm ước chung lớn nhất của từng cặp số trong ba số sau đây: a) 31, 22, 34; b) 105, 128, 135

Do đó: 105 = 3 . 5 . 7

128 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 27

135 = 3 . 3 . 3 . 5 = 33 . 5 

+ Hai số 105 và 128 không có thừa số nguyên tố chung nên ƯCLN(105, 128) = 1. 

+ Hai số 128 và 135 không có thừa số nguyên tố chung nên ƯCLN(128, 135) = 1.

+ Hai số 105 và 135 có các thừa số nguyên tố chung là 3 và 5. 

Số 3 có số mũ nhỏ nhất là 1; số 5 có số mũ nhỏ nhất là 1. 

Do đó: ƯCLN(105, 135) = 31 . 51 = 3 . 5 = 15

Vậy ƯCLN(105, 128) = 1; ƯCLN(128, 135) = 1 và ƯCLN(105, 135) = 15.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay